Journal Home > Volume 14 , Issue 7

Multifunctionality has become a mainstream trend in the development of smart clothing and flexible wearable devices. Nevertheless, it remains a grand challenge to realize multiple functions, such as sensing, actuating and information displaying, in one single multifunctional material. Here, we present one multifunctional integration strategy by employing monolithic superaligned carbon nanotube (SACNT) composite, which can leverage three different functions through fascinating features of SACNT. Firstly, by using thermochromic dye as a color-memorizing component and SACNT as a photothermal converter, the composite film can be utilized as a flexible rewritable medium. It demonstrates excellent rewriting performances (reversibility > 500 times). Secondly, the composite can be tailored to fabricate an actuator, when its length direction is along the SACNT alignment. The actuator shows a bending-morphing when illuminated by near-infrared light. The morphing is attributed to a large difference in volume change between the SACNT and polymer when the SACNT absorbs the optical energy and heats the composite. Thirdly, owing to the unique anisotropy of SACNT, the composite is easily to be stretched in the direction perpendicular to the SACNT alignment, accompanied by a change in electrical resistance. Therefore, the composite is able to be used as a strain sensor. Finally, we fabricate two smart wearable devices to demonstrate the applications, which realize the functions of human-motion detection (sensing) and rewritable information display (rewriting) simultaneously. This multifunctional SACNT composite is expected to have potential applications in the next-generation wearable devices, smart clothing and so on.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Monolithic superaligned carbon nanotube composite with integrated rewriting, actuating and sensing multifunctions

Show Author's information Peidi Zhou1,2,§Wei Zhang1,2,§Luzhuo Chen1,2( )Jian Lin1,2Zhiling Luo1,2Changhong Liu3Kaili Jiang3,4
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing 100084, China
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China

§ Peidi Zhou and Wei Zhang contributed equally to this work.

Abstract

Multifunctionality has become a mainstream trend in the development of smart clothing and flexible wearable devices. Nevertheless, it remains a grand challenge to realize multiple functions, such as sensing, actuating and information displaying, in one single multifunctional material. Here, we present one multifunctional integration strategy by employing monolithic superaligned carbon nanotube (SACNT) composite, which can leverage three different functions through fascinating features of SACNT. Firstly, by using thermochromic dye as a color-memorizing component and SACNT as a photothermal converter, the composite film can be utilized as a flexible rewritable medium. It demonstrates excellent rewriting performances (reversibility > 500 times). Secondly, the composite can be tailored to fabricate an actuator, when its length direction is along the SACNT alignment. The actuator shows a bending-morphing when illuminated by near-infrared light. The morphing is attributed to a large difference in volume change between the SACNT and polymer when the SACNT absorbs the optical energy and heats the composite. Thirdly, owing to the unique anisotropy of SACNT, the composite is easily to be stretched in the direction perpendicular to the SACNT alignment, accompanied by a change in electrical resistance. Therefore, the composite is able to be used as a strain sensor. Finally, we fabricate two smart wearable devices to demonstrate the applications, which realize the functions of human-motion detection (sensing) and rewritable information display (rewriting) simultaneously. This multifunctional SACNT composite is expected to have potential applications in the next-generation wearable devices, smart clothing and so on.

Keywords: actuator, carbon nanotube, sensor, rewritable media, multifunctional

References(33)

[1]
Ma, Y. J.; Zhang, Y. C.; Cai, S. S.; Han, Z. Y.; Liu, X.; Wang, F. L.; Cao, Y.; Wang, Z. H.; Li, H. F.; Chen, Y. H. et al. Flexible hybrid electronics for digital healthcare. Adv. Mater. 2020, 32, 1902062.
[2]
Trung, T. Q.; Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 2016, 28, 4338-4372.
[3]
Wang, C. Y.; Xia, K. L.; Wang, H. M.; Liang, X. P.; Yin, Z.; Zhang, Y. Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2019, 31, 1801072.
[4]
Nozariasbmarz, A.; Suarez, F.; Dycus, J. H.; Cabral, M. J.; LeBeau, J. M.; Öztürk, M. C.; Vashaee, D. Thermoelectric generators for wearable body heat harvesting: Material and device concurrent optimization. Nano Energy 2020, 67, 104265.
[5]
Ning, W.; Wang, Z. H.; Liu, P.; Zhou, D. L.; Yang, S. Y.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Multifunctional super-aligned carbon nanotube/polyimide composite film heaters and actuators. Carbon 2018, 139, 1136-1143.
[6]
Zhou, Z. W.; Yan, Q. H.; Liu, C. H.; Fan, S. S. An arm-like electrothermal actuator based on superaligned carbon nanotube/ polymer composites. New Carbon Mater. 2017, 32, 411-418.
[7]
Wang, W.; Xiang, C. X.; Zhu, Q.; Zhong, W. B.; Li, M. F.; Yan, K. L.; Wang, D. Multistimulus responsive actuator with go and carbon nanotube/PDMS bilayer structure for flexible and smart devices. ACS Appl. Mater. Interfaces 2018, 10, 27215-27223.
[8]
Wang, L.; Chen, Y.; Lin, L. W.; Wang, H.; Huang, X. W.; Xue, H. G.; Gao, J. F. Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem. Eng. J. 2019, 362, 89-98.
[9]
Tas, M. O.; Baker, M. A.; Masteghin, M. G.; Bentz, J.; Boxshall, K.; Stolojan, V. Highly stretchable, directionally oriented carbon nanotube/ PDMS conductive films with enhanced sensitivity as wearable strain sensors. ACS Appl. Mater. Interfaces 2019, 11, 39560-39573.
[10]
Otley, M. T.; Zhu, Y. M.; Zhang, X. Z.; Li, M. F.; Sotzing, G. A. Color-tuning neutrality for flexible electrochromics via a single-layer dual conjugated polymer approach. Adv. Mater. 2014, 26, 8004-8009.
[11]
Wang, W. S.; Liu, L. T.; Feng, J.; Yin, Y. D. Photocatalytic reversible color switching based on titania nanoparticles. Small Methods 2018, 2, 1700273.
[12]
Zhu, P. C.; Wang, Y. L.; Wang, Y.; Mao, H. Y.; Zhang, Q.; Deng, Y. Flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for E-skin application. Adv. Energy Mater. 2020, 10, 2001945.
[13]
Amjadi, M.; Sitti, M. Self-sensing paper actuators based on graphite-carbon nanotube hybrid films. Adv. Sci. 2018, 5, 1800239.
[14]
Zhong, J. W.; Ma, Y.; Song, Y.; Zhong, Q. Z.; Chu, Y.; Karakurt, I.; Bogy, D. B.; Lin, L. W. A flexible piezoelectret actuator/sensor patch for mechanical human-machine interfaces. ACS Nano 2019, 13, 7107-7116.
[15]
Xiao, P.; Liang, Y.; He, J.; Zhang, L.; Wang, S.; Gu, J. C.; Zhang, J. W.; Huang, Y. J.; Kuo, S.; Chen, T. Hydrophilic/hydrophobic interphase-mediated bubble-like stretchable Janus ultrathin films toward self-adaptive and pneumatic multifunctional electronics. ACS Nano 2019, 13, 4368-4378.
[16]
Wang, X. Q.; Chan, K. H.; Cheng, Y.; Ding, T. P.; Li, T. T.; Achavananthadith, S.; Ahmet, S.; Ho, J. S.; Ho, G. W. Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv. Mater. 2020, 32, 2000351.
[17]
Ma, C. X.; Lu, W.; Yang, X. X.; He, J.; Le, X. X.; Wang, L.; Zhang, J. W.; Serpe, M. J.; Huang, Y. J.; Chen, T. Bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors. Adv. Funct. Mater. 2018, 28, 1704568.
[18]
Wang, Y. L.; Cui, H. Q.; Zhao, Q. L.; Du, X. M. Chameleon-inspired structural-color actuators. Matter 2019, 1, 626-638.
[19]
Mu, J. K.; Wang, G.; Yan, H. P.; Li, H. Y.; Wang, X. M.; Gao, E. L.; Hou, C. Y.; Pham, A. T. C.; Wu, L. J.; Zhang, Q. H. et al. Molecular- channel driven actuator with considerations for multiple configurations and color switching. Nat. Commun. 2018, 9, 590.
[20]
Cai, G. F.; Wang, X.; Cui, M. Q.; Darmawan, P.; Wang, J. X.; Eh, A. L. S.; Lee, P. S. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 2015, 12, 258-267.
[21]
Yun, T. Y.; Li, X. L.; Kim, S. H.; Moon, H. C. Dual-function electrochromic supercapacitors displaying real-time capacity in color. ACS Appl. Mater. Interfaces 2018, 10, 43993-43999.
[22]
Wu, X. M.; Wang, Q. G.; Zhang, W. Z.; Wang, Y.; Chen, W. X. Enhanced electrochemical performance of hydrogen-bonded graphene/polyaniline for electrochromo-supercapacitor. J. Mater. Sci. 2016, 51, 7731-7741.
[23]
Jiang, K. L.; Li, Q. Q.; Fan, S. S. Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.
[24]
Zhang, X.; Jiang, K.; Feng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T.; Li, Q.; Fan, S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505-1510.
[25]
Feng, C.; Liu, K.; Wu, J. S.; Liu, L.; Cheng, J. S.; Zhang, Y. Y.; Sun, Y. H.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885-891.
[26]
Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154-1161.
[27]
Yu, Y.; Luo, S.; Sun, L.; Wu, Y.; Jiang, K. L.; Li, Q. Q.; Wang, J. P.; Fan, S. S. Ultra-stretchable conductors based on buckled super- aligned carbon nanotube films. Nanoscale 2015, 7, 10178-10185.
[28]
Chen, L. Z.; Weng, M. C.; Zhou, Z. W.; Zhou, Y.; Zhang, L. L.; Li, J. X.; Huang, Z. G.; Zhang, W.; Liu, C. H.; Fan, S. S. Large- deformation curling actuators based on carbon nanotube composite: Advanced-structure design and biomimetic application. ACS Nano 2015, 9, 12189-12196.
[29]
Chen, L. Z.; Weng, M. C.; Zhang, W.; Zhou, Z. W.; Zhou, Y.; Xia, D.; Li, J. X.; Huang, Z. G.; Liu, C. H.; Fan, S. S. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites. Nanoscale 2016, 8, 6877-6883.
[30]
Chen, L. Z.; Weng, M. C.; Huang, F.; Zhang, W. Long-lasting and easy-to-use rewritable paper fabricated by printing technology. ACS Appl. Mater. Interfaces 2018, 10, 40149-40155.
[31]
Shi, Q. W.; Li, J. H.; Hou, C. Y.; Shao, Y. L.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. A remote controllable fiber-type near-infrared light- responsive actuator. Chem. Commun. 2017, 53, 11118-11121.
[32]
Zhou, J.; Yu, H.; Xu, X. Z.; Han, F.; Lubineau, G. Ultrasensitive, stretchable strain sensors based on fragmented carbon nanotube papers. ACS Appl. Mater. Interfaces 2017, 9, 4835-4842.
[33]
Chen, S. J.; Wu, R. Y.; Li, P.; Li, Q.; Gao, Y.; Qian, B.; Xuan, F. Z. Acid-interface engineering of carbon nanotube/elastomers with enhanced sensitivity for stretchable strain sensors. ACS Appl. Mater. Interfaces 2018, 10, 37760-37766.
File
12274_2021_3285_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 September 2020
Revised: 14 November 2020
Accepted: 07 December 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51773039 and 11974076), Natural Science Foundation of Fujian Province (Nos.2020J02036 and 2018J06001), Program for New Century Excellent Talents in University of Fujian Province (No. J1-1318), and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (No. KF201810).

Return