Journal Home > Volume 14 , Issue 8

Enhancing the mechanical strength of highly conductive pure metals usually causes significant reduction in their electrical conductivity. For example, introducing phase/matrix interfaces or more grain boundaries, are common and effective methods to strengthen metals. But it simultaneously increases the electron scattering at the interface, thus reducing the electrical conductivity. In this study, we demonstrate that pure aluminum (Al)/carbon nanotubes (CNTs) nanocomposites prepared by friction stir processing have successfully broken through these limitations. The yield strength and tensile strength of Al/CNTs nanocomposites have improved by 104.7% and 51.8% compared to pure Al, while the electrical conductivity remained comparable to that of pure Al. To explore the potential mechanisms, the interface between CNTs and Al was examined and characterized by transmission electron microscopy (TEM) and Raman spectroscopy. Little interfacial reaction compounds were present and no visible physical gaps were observed at CNTs and Al interfaces. We defined it as a clean and tightly bonded interface. Although the quantity of phase interface has increased, the electrical conductivity of the nanocomposite remains approximately unchanged. We attribute the preserved electrical conductivity to the clean and tightly bonded CNTs/Al interface in the nanocomposite.


menu
Abstract
Full text
Outline
About this article

A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity

Show Author's information Shuai Zhang1Gaoqiang Chen1Timing Qu1Jinquan Wei2Yufan Yan1Qu Liu1Mengran Zhou1Gong Zhang1Zhaoxia Zhou3Huan Gao4Dawei Yao4Yuanwang Zhang4Qingyu Shi1( )Hua Zhang5
State Key Laboratory of Tribology, Key Laboratory for Advanced Materials Processing Technology Ministry of Education of China, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Key Lab for Advanced Materials Processing Technology of Education Ministry, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Loughborough materials characterization center, Department of materials, Loughborough University, Loughborough, LE11 3TU, UK
State Key Laboratory of Special Cable Technology, Shanghai Electric Cable Research Institute Co., Ltd., Shanghai 200093, China
School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China

Abstract

Enhancing the mechanical strength of highly conductive pure metals usually causes significant reduction in their electrical conductivity. For example, introducing phase/matrix interfaces or more grain boundaries, are common and effective methods to strengthen metals. But it simultaneously increases the electron scattering at the interface, thus reducing the electrical conductivity. In this study, we demonstrate that pure aluminum (Al)/carbon nanotubes (CNTs) nanocomposites prepared by friction stir processing have successfully broken through these limitations. The yield strength and tensile strength of Al/CNTs nanocomposites have improved by 104.7% and 51.8% compared to pure Al, while the electrical conductivity remained comparable to that of pure Al. To explore the potential mechanisms, the interface between CNTs and Al was examined and characterized by transmission electron microscopy (TEM) and Raman spectroscopy. Little interfacial reaction compounds were present and no visible physical gaps were observed at CNTs and Al interfaces. We defined it as a clean and tightly bonded interface. Although the quantity of phase interface has increased, the electrical conductivity of the nanocomposite remains approximately unchanged. We attribute the preserved electrical conductivity to the clean and tightly bonded CNTs/Al interface in the nanocomposite.

Keywords: electrical conductivity, interface, mechanical properties, friction stir processing, carbon nanotubes/aluminum nanocomposites

References(52)

[1]
Lu, L.; Shen, Y. F.; Chen, X. H.; Qian, L. H.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 2004, 304, 422-426.
[2]
Valiev, R. Z.; Murashkin, M. Y.; Sabirov, I. A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity. Scripta Mater. 2014, 76, 13-16.
[3]
Cui, X. L.; Wu, Y. Y.; Zhang, G. J.; Liu, Y. B.; Liu, X. F. Study on the improvement of electrical conductivity and mechanical properties of low alloying electrical aluminum alloys. Compos. Part. B Eng. 2017, 110, 381-387.
[4]
Desai, P. D.; James, H. M.; Ho, C. Y. Electrical resistivity of aluminum and manganese. J. Phys. Chem. Ref. Data 1984, 13, 1131-1172.
[5]
Sutton, A. P.; Balluffi, R. W. Interfaces in Crystalline Materials; Oxford: Clarendon Press, 1995.
[6]
Zhou, B. H.; Xu, Y.; Wang, S.; Zhou, G. H.; Xia, K. An ab initio investigation on boundary resistance for metallic grains. Solid. State Commun. 2010, 150, 1422-1424.
[7]
Kino, T.; Endo, T.; Kawata, S. Deviations from Matthiessen's rule of the electrical resistivity of dislocations in aluminum. J. Phys. Soc. Jpn. 1974, 36, 698-705.
[8]
Christian, J. W.; Mahajan, S. Deformation twinning. Prog. Mater. Sci. 1995, 39, 1-157.
[9]
Shen, Y. F.; Lu, L.; Lu, Q. H.; Jin, Z. H.; Lu, K. Tensile properties of copper with nano-scale twins. Scripta Mater. 2005, 52, 989-994.
[10]
Hjortstam, O.; Isberg, P.; Söderholm, S.; Dai, H. Can we achieve ultra-low resistivity in carbon nanotube-based metal composites? Appl. Phys. A 2004, 78, 1175-1179.
[11]
Feng, Y.; Yuan, H. L.; Zhang, M. Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater. Charact. 2005, 55, 211-218.
[12]
Daoush, W. M.; Lim, B. K.; Mo, C. B.; Nam, D. H.; Hong, S. H. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process. Mat. Sci. Eng. A 2009, 513-514, 247-253.
[13]
Uddin, S. M.; Mahmud, T.; Wolf, C.; Glanz, C.; Kolaric, I.; Volkmer, C.; Höller, H.; Wienecke, U.; Roth, S.; Fecht, H. J. Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Compos. Sci. Technol. 2010, 70, 2253-2257.
[14]
Liu, Z. Y.; Xiao, B. L.; Wang, W. G.; Ma, Z. Y. Tensile strength and electrical conductivity of carbon nanotube reinforced Aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J. Mater. Sci. Technol. 2014, 30, 649-655.
[15]
Chen, B.; Li, S. F.; Imai, H.; Jia, L.; Umeda, J.; Takahashi, M.; Kondoh, K. Carbon nanotube induced microstructural characteristics in powder metallurgy Al matrix composites and their effects on mechanical and conductive properties. J. Alloys Compd. 2015, 651, 608-615.
[16]
Zhou, W. W.; Yamamoto, G.; Fan, Y. C.; Kwon, H.; Hashida, T.; Kawasaki, A. In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites. Carbon 2016, 106, 37-47.
[17]
Xu, C. L.; Wei, B. Q.; Ma, R. Z.; Liang, J.; Ma, X. K.; Wu, D. H. Fabrication of aluminum-carbon nanotube composites and their electrical properties. Carbon 1999, 37, 855-858.
[18]
Ibrahim, I. A.; Mohamed, F. A.; Lavernia, E. J. Particulate reinforced metal matrix composites—A review. J. Mater. Sci. 1991, 26, 1137-1156.
[19]
Liu, Z. Y.; Xu, S. J.; Xiao, B. L.; Xue, P.; Wang, W. G.; Ma, Z. Y. Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Compos. Part. A Appl. Sci. Manuf. 2012, 43, 2161-2168.
[20]
Liu, Z. Y.; Xiao, B. L.; Wang, W. G.; Ma, Z. Y. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 2012, 50, 1843-1852.
[21]
Mishra, R. S.; Ma, Z. Y.; Charit, I. Friction stir processing: A novel technique for fabrication of surface composite. Mat. Sci. Eng. A 2003, 341, 307-310.
[22]
Sun, K.; Shi, Q. Y.; Sun, Y. J.; Chen, G. Q. Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing. Mat. Sci. Eng. A 2012, 547, 32-37.
[23]
Cao, X.; Shi, Q. Y.; Liu, D. M.; Feng, Z. L.; Liu, Q.; Chen, G. Q. Fabrication of in situ carbon fiber/aluminum composites via friction stir processing: Evaluation of microstructural, mechanical and tribological behaviors. Compos. Part. B Eng. 2018, 139, 97-105.
[24]
Izadi, H, Gerlich, A. P. Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites. Carbon 2012, 50, 4744-4749.
[25]
Liu, Q.; Ke, L. M.; Liu, F. C.; Huang, C. P.; Xing, L. Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing. Mater. Design 2013, 45, 343-348.
[26]
Zhou, Z.; Rainforth, W. M.; Luo, Q.; Hovsepian, P. E.; Ojeda, J. J.; Romero-Gonzalez, M. E. Wear and friction of TiAlN/VN coatings against Al2O3 in air at room and elevated temperatures. Acta Mater. 2010, 58, 2912-2925.
[27]
Zhou, Z.; Rainforth, W. M.; Tan, C. C.; Zeng, P.; Ojeda, J. J.; Romero-Gonzalez, M. E.; Hovsepian, P. E. The role of the tribofilm and roll-like debris in the wear of nanoscale nitride PVD coatings. Wear 2007, 263, 1328-1334.
[28]
Choi, H.; Shin, J.; Min, B.; Park, J.; Bae, D. Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. J. Mater. Res. 2009, 24, 2610-2616.
[29]
Chen, B.; Shen, J.; Ye, X.; Imai, H.; Umeda, J.; Takahashi, M.; Kondoh, K. Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon 2017, 114, 198-208.
[30]
Chen, B.; Li, S. F.; Imai, H.; Jia, L.; Umeda, J.; Takahashi, M.; Kondoh, K. An approach for homogeneous carbon nanotube dispersion in Al matrix composites. Mater. Design 2015, 72, 1-8.
[31]
Sun, Y.; Cui, H.; Gong, L.; Chen, J.; Shen, P. K.; Wang, C. X. Field nanoemitter: One-dimension Al4C3 ceramics. Nanoscale 2011, 3, 2978-2982.
[32]
Raptis, D.; Seferlis, A. K.; Mylona, V.; Politis, C.; Lianos, P. Electrochemical hydrogen and electricity production by using anodes made of commercial aluminum. Int. J. Hydrogen Energy 2019, 44, 1359-1365.
[33]
Ma, J. J.; Li, W. H.; Wang, G. X.; Li, Y. Q.; Ren, F. Z.; Xiong, Y. Influences of L-cysteine/zinc oxide additive on the electrochemical behavior of pure aluminum in alkaline solution. J. Electrochem. Soc. 2018, 165, A266-A272.
[34]
Su, H.; Wu, C. S.; Pittner, A.; Rethmeier, M. Thermal energy generation and distribution in friction stir welding of aluminum alloys. Energy 2014, 77, 720-731.
[35]
Liu, X. C.; Sun, Y. F.; Nagira, T.; Ushioda, K.; Fujii, H. Experimental evaluation of strain and strain rate during rapid cooling friction stir welding of pure copper. Sci. Technol. Weld. Joi. 2019, 24, 352-359.
[36]
Colegrove, P. A.; Shercliff, H. R. CFD modelling of friction stir welding of thick plate 7449 aluminium alloy. Sci. Technol. Weld. Joi. 2006, 11, 429-441.
[37]
Alley, P.; Serin, B. Deviations from Matthiessen's rule in aluminum, tin, and copper alloys. Phys. Rev. 1959, 116, 334-338.
[38]
Cao, M.; Luo, Y. Z.; Xie, Y. Q.; Tan, Z. Q.; Fan, G. L.; Guo, Q.; Su, Y. S.; Li, Z. Q.; Xiong, D. B. The influence of interface structure on the electrical conductivity of graphene embedded in aluminum matrix. Adv. Mater. Interfaces 2019, 6, 1900468.
[39]
Wilhite, P.; Vyas, A. A.; Tan, J.; Tan, J.; Yamada, T.; Wang, P.; Park, J.; Yang, C. Y. Metal-nanocarbon contacts. Semicond. Sci. Technol. 2014, 29, 054006.
[40]
Matsuda, Y.; Deng, W. Q.; Goddard, W. A. Contact resistance properties between nanotubes and various metals from quantum mechanics. J. Phys. Chem. C 2007, 111, 11113-11116.
[41]
Naeemi, A.; Meindl, J. D. Carbon nanotube interconnects. Annu. Rev. Mater. Res. 2009, 39, 255-275.
[42]
Dong, L. F.; Youkey, S.; Bush, J.; Jiao, J. Dubin, V. M.; Chebiam, R. V. Effects of local Joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes. J. Appl. Phys. 2007, 101, 024320.
[43]
Yamada, T.; Saito, T.; Suzuki, M.; Wilhite, P.; Sun, X. H.; Akhavantafti, N.; Fabris, D.; Yang, C. Y. Tunneling between carbon nanofiber and gold electrodes. J. Appl. Phys. 2010, 107, 044304.
[44]
Chen, G. Q.; Feng, Z. L.; Chen, J.; Liu, L.; Li, H.; Liu, Q.; Zhang, S.; Cao, X.; Zhang, G.; Shi, Q. Y. Analytical approach for describing the collapse of surface asperities under compressive stress during rapid solid state bonding. Scripta. Mater. 2017, 128, 41-44.
[45]
Wu, J. Q.; Lee, C. C. Low-pressure solid-state bonding technology using fine-grained silver foils for high-temperature electronics. J. Mater. Sci. 2018, 53, 2618-2630.
[46]
Wu, J. Q.; Huo, Y. J.; Lee, C. C. Direct Ag-Ag bonding by in-situ reduction of surface oxides for advanced chip-package interconnection. Materialia 2018, 4, 417-422.
[47]
Nam, D. H.; Cha, S. I.; Lim, B. K.; Park, H. M.; Han, D. S.; Hong, S. H. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites. Carbon 2012, 50, 2417-2423.
[48]
Kelly, A.; Tyson, W. R. Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum. J. Mech. Phys. Solids 1965, 13, 329-350.
[49]
George, R.; Kashyap, K. T.; Rahul, R.; Yamdagni, S. Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scripta Mater. 2005, 53, 1159-1163.
[50]
Chen, B.; Kondoh, K.; Imai, H.; Umeda, J.; Takahashi, M. Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions. Scripta Mater. 2016, 113, 158-162.
[51]
Park, J. G.; Keum, D. H.; Lee, Y. H. Strengthening mechanisms in carbon nanotube-reinforced aluminum composites. Carbon 2015, 95, 690-698.
[52]
Ryu, H. J.; Cha, S. I.; Hong, S. H. Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites. J. Mater. Res. 2003, 18, 2851-2858.
Publication history
Copyright

Publication history

Received: 16 July 2020
Revised: 07 September 2020
Accepted: 07 December 2020
Published: 20 January 2021
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return