Journal Home > Volume 14 , Issue 8

In this work, we demonstrate the power of a simple top-down electrochemical erosion approach to obtain Pt nanoparticle with controlled shapes and sizes (in the range from ~ 2 to ~ 10 nm). Carbon supported nanoparticles with narrow size distributions have been synthesized by applying an alternating voltage to macroscopic bulk platinum structures, such as disks or wires. Without using any surfactants, the size and shape of the particles can be changed by adjusting simple parameters such as the applied potential, frequency and electrolyte composition. For instance, application of a sinusoidal AC voltage with lower frequencies results in cubic nanoparticles; whereas higher frequencies lead to predominantly spherical nanoparticles. On the other hand, the amplitude of the sinusoidal signal was found to affect the particle size; the lower the amplitude of the applied AC signal, the smaller the resulting particle size. Pt/C catalysts prepared by this approach showed 0.76 A/mg mass activity towards the oxygen reduction reaction which is ~ 2 times higher than the state-of-the-art commercial Pt/C catalyst (0.42 A/mg) from Tanaka. In addition to this, we discussed the mechanistic insights about the nanoparticle formation pathways.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electrochemical top-down synthesis of C-supported Pt nanoparticles with controllable shape and size: Mechanistic insights and application

Show Author's information Batyr Garlyyev1,§( )Sebastian Watzele1,§Johannes Fichtner1,§Jan Michalička2Alexander Schökel3Anatoliy Senyshyn4Andrea Perego5Dingjie Pan6Hany A. El-Sayed7Jan M. Macak2Plamen Atanassov5,6Iryna V. Zenyuk5,6( )Aliaksandr S. Bandarenka1( )
Physics of Energy Conversion and Storage, Technical University of Munich, James Franck Straße 1, 85748 Garching, Germany
Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
Deutsches Elektronen Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
Heinz Maier-Leibnitz-Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
Department of Chemical Engineering, National Fuel Cell Research Center, University of California, Irvine, 92697-2580 California, USA
Department of Material Science and Engineering, University of California, Irvine, 92697-2580 California, USA
Chair of Technical Electrochemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany

§ Batyr Garlyyev, Sebastian Watzele, and Johannes Fichtner contributed equally to this work.

Abstract

In this work, we demonstrate the power of a simple top-down electrochemical erosion approach to obtain Pt nanoparticle with controlled shapes and sizes (in the range from ~ 2 to ~ 10 nm). Carbon supported nanoparticles with narrow size distributions have been synthesized by applying an alternating voltage to macroscopic bulk platinum structures, such as disks or wires. Without using any surfactants, the size and shape of the particles can be changed by adjusting simple parameters such as the applied potential, frequency and electrolyte composition. For instance, application of a sinusoidal AC voltage with lower frequencies results in cubic nanoparticles; whereas higher frequencies lead to predominantly spherical nanoparticles. On the other hand, the amplitude of the sinusoidal signal was found to affect the particle size; the lower the amplitude of the applied AC signal, the smaller the resulting particle size. Pt/C catalysts prepared by this approach showed 0.76 A/mg mass activity towards the oxygen reduction reaction which is ~ 2 times higher than the state-of-the-art commercial Pt/C catalyst (0.42 A/mg) from Tanaka. In addition to this, we discussed the mechanistic insights about the nanoparticle formation pathways.

Keywords: oxygen reduction reaction, nanoparticles, platinum, electrochemical synthesis

References(35)

[1]
Chen, A. C.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 2010, 110, 3767-3804.
[2]
Pedone, D.; Moglianetti, M.; De Luca, E.; Bardi, G.; Pompa, P. P. Platinum nanoparticles in nanobiomedicine. Chem. Soc. Rev. 2017, 46, 4951-4975.
[3]
Langer, J.; de Aberasturi, D. J.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28-117.
[4]
Fichtner, J.; Watzele, S.; Garlyyev, B; Kluge, R. M.; Haimerl, F.; El-Sayed, H. A.; Li, W. J.; Maillard, F. M.; Dubau, L.; Chattot, R. et al. Tailoring the oxygen reduction activity of Pt nanoparticles through surface defects: A simple top-down approach. ACS Catal. 2020, 10, 3131-3142.
[5]
Fichtner, J.; Garlyyev, B.; Watzele, S.; El-Sayed, H. A.; Schwämmlein, J. N.; Li, W. J.; Maillard, F.; Dubau, L.; Michalička, J.; Macak, J. M. et al. Top-down synthesis of nanostructured platinum-lanthanide alloy oxygen reduction reaction catalysts: PtxPr/C as an example. ACS Appl. Mater. Interfaces 2019, 11, 5129-5135.
[6]
Rück, M.; Garlyyev, B.; Mayr, F.; Bandarenka, A. S.; Gagliardi, A. Oxygen reduction activities of strained platinum core-shell electrocatalysts predicted by machine learning. J. Phys. Chem. Lett. 2020, 11, 1773-1780.
[7]
Mahmoud, M. A.; Garlyyev, B.; El-Sayed, M. A. Controlling the catalytic efficiency on the surface of hollow gold nanoparticles by introducing an inner thin layer of platinum or palladium. J. Phys. Chem. Lett. 2014, 5, 4088-4094.
[8]
Strasser, P.; Gliech, M.; Kuehl, S.; Moeller, T. Electrochemical processes on solid shaped nanoparticles with defined facets. Chem. Soc. Rev. 2018, 47, 715-735.
[9]
Garlyyev, B.; Liang, Y. C.; Butt, F. K.; Bandarenka, A. S. Engineering of highly active silver nanoparticles for oxygen electroreduction via simultaneous control over their shape and size. Adv. Sustainable Syst. 2017, 1, 1700117.
[10]
Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60-95.
[11]
Mahmoud, M. A.; Garlyyev, B.; El-Sayed, M. A. Wavelength-selective photocatalysis using gold-platinum nanorattles. J. Phys. Chem. C 2015, 119, 18618-18626.
[12]
Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837-1866.
[13]
Garlyyev, B.; Kratzl, K.; Rück, M.; Michalička, J.; Fichtner, J.; Macak, J. M.; Kratky, T.; Günther, S.; Cokoja, M.; Bandarenka, A. S. et al. Optimizing the size of platinum nanoparticles for enhanced mass activity in the electrochemical oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 9596-9600.
[14]
Haber, F. The phenomenon of the formation of metallic dust from cathodes. Trans. Am. Electrochem. Soc. 1902, 2, 189-196.
[15]
Yanson, A. I.; Rodriguez, P.; Garcia-Araez, N.; Mom, R. V.; Tichelaar, F. D.; Koper, M. T. M. Cathodic corrosion: A quick, clean, and versatile method for the synthesis of metallic nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 6346-6350.
[16]
Hersbach, T. J. P.; McCrum, I. T.; Anastasiadou, D.; Wever, R.; Calle-Vallejo, F.; Koper, M. T. M. Alkali metal cation effects in structuring Pt, Rh, and Au surfaces through cathodic corrosion. ACS Appl. Mater. Interfaces 2018, 10, 39363-39379.
[17]
Leontyev, I.; Kuriganova, A.; Kudryavtsev, Y.; Dkhil, B.; Smirnova, N. New life of a forgotten method: Electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells. Appl. Catal. A 2012, 431-432, 120-125.
[18]
Duca, M.; Rodriguez, P.; Yanson, A. I.; Koper, M. T. M. Selective electrocatalysis on platinum nanoparticles with preferential (100) orientation prepared by cathodic corrosion. Top. Catal. 2014, 57, 255-264.
[19]
Rodriguez, P.; Plana, D.; Fermin, D. J.; Koper, M. T. M. New insights into the catalytic activity of gold nanoparticles for CO oxidation in electrochemical media. J. Catal. 2014, 311, 182-189.
[20]
Kromer, M. L.; Monzó, J.; Lawrence, M. J.; Kolodziej, A.; Gossage, Z. T.; Simpson, B. H.; Morandi, S.; Yanson, A.; Rodríguez-López, J.; Rodríguez, P. High-throughput preparation of metal oxide nanocrystals by cathodic corrosion and their use as active photocatalysts. Langmuir 2017, 33, 13296-13302.
[21]
Lawrence, M. J.; Kolodziej, A.; Rodriguez, P. Controllable synthesis of nanostructured metal oxide and oxyhydroxide materials via electrochemical methods. Curr. Opin. Electrochem. 2018, 10, 7-15.
[22]
Lawrence, M. J.; Celorrio, V.; Shi, X. B.; Wang, Q.; Yanson, A.; Adkins, N. J. E.; Gu, M.; Rodríguez-López, J.; Rodriguez, P. Electrochemical synthesis of nanostructured metal-doped titanates and investigation of their activity as oxygen evolution photoanodes. ACS Appl. Energy Mater. 2018, 1, 5233-5244.
[23]
Rodriguez, P.; Tichelaar, F. D.; Koper, M. T. M.; Yanson, A. I. Cathodic corrosion as a facile and effective method to prepare clean metal alloy nanoparticles. J. Am. Chem. Soc. 2011, 133, 17626-17629.
[24]
Monzó, J.; van der Vliet, D. F.; Yanson, A.; Rodriguez, P. Elucidating the degradation mechanism of the cathode catalyst of PEFCs by a combination of electrochemical methods and X-ray fluorescence spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 22407-22415.
[25]
Yanson, A. I.; Antonov, P. V.; Rodriguez, P.; Koper, M. T. M. Influence of the electrolyte concentration on the size and shape of platinum nanoparticles synthesized by cathodic corrosion. Electrochim. Acta 2013, 112, 913-918.
[26]
Hersbach, T. J. P.; Yanson, A. I.; Koper, M. T. M. Anisotropic etching of platinum electrodes at the onset of cathodic corrosion. Nat. Commun. 2016, 7, 12653.
[27]
Garlyyev, B.; Fichtner, J.; Piqué, O.; Schneider, O.; Bandarenka, A. S.; Calle-Vallejo, F. Revealing the nature of active sites in electrocatalysis. Chem. Sci. 2019, 10, 8060-8075.
[28]
Calle-Vallejo, F.; Pohl, M. D.; Reinisch, D.; Loffreda, D.; Sautet, P.; Bandarenka, A. S. Why conclusions from platinum model surfaces do not necessarily lead to enhanced nanoparticle catalysts for the oxygen reduction reaction. Chem. Sci. 2017, 8, 2283-2289.
[29]
Seitsonen, A. P.; Zhu, Y. J.; Bedürftig, K.; Over, H. Bonding mechanism and atomic geometry of an ordered hydroxyl overlayer on Pt(111). J. Am. Chem. Soc. 2001, 123, 7347-7351.
[30]
Carmo, M.; Linardi, M.; Poco, J. G. R. H2O2 treated carbon black as electrocatalyst support for polymer electrolyte membrane fuel cell applications. Int. J. Hydrog. Energy 2008, 33, 6289-6297.
[31]
Dippel, A. C.; Liermann, H. P.; Delitz, J. T.; Walter, P.; Schulte-Schrepping, H.; Seeck, O. H.; Franz, H. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction. J. Synchrotron Rad. 2015, 22, 675-687.
[32]
Hammersley, A. P.; Svensson, S. O.; Hanfland, M.; Fitch, A. N.; Hausermann, D. Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Res. 1996, 14, 235-248.
[33]
Rodríguez-Carvajal, J. Recent developments of the program FULLPROF, in commission on powder diffraction (IUCr). Newsletter 2001, 26, 12-19.
[34]
Soper, A. K.; Barney, E. R. Extracting the pair distribution function from white-beam X-ray total scattering data. J. Appl. Cryst. 2011, 44, 714-726.
[35]
Farrow, C. L.; Juhas, P.; Liu, J. W.; Bryndin, D.; Božin, E. S.; Bloch, J.; Proffen, T.; Billinge, S. J. L. PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. J. Phys.: Condens. Matter 2007, 19, 335219.
File
12274_2020_3281_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 21 October 2020
Revised: 24 November 2020
Accepted: 02 December 2020
Published: 29 December 2020
Issue date: August 2021

Copyright

© The Author(s) 2020

Acknowledgements

The financial support from Deutsche Forschungsgemeinschaft under Germany’s excellence strategy - EXC 2089/1 - 390776260, Germany’s excellence cluster "e-conversion" , DFG project BA 5795/4-1, and funding from the TUM IGSSE project 11.01 are gratefully acknowledged. We also acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA III using beamline P02.1. We acknowledge CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110) and CEITEC Nano Research Infrastructure for TEM measurements. We thank Mr. Shujin Hou for assisting with powder XRD measurements.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return