Journal Home > Volume 14 , Issue 8

Levodopa (L-DOPA), a precursor of dopamine, is commonly prescribed for the treatment of the Parkinson’s disease (PD). However, oral administration of levodopa results in a high level of homocysteine in the peripheral circulation, thereby elevating the risk of cardiovascular disease, and limiting its clinical application. Here, we report a non-invasive method to deliver levodopa to the brain by delivering L-DOPA-loaded sub-50 nm nanoparticles via brain-lymphatic vasculature. The hydrophilic L-DOPA was successfully encapsulated into nanoparticles of tannic acid (TA)/polyvinyl alcohol (PVA) via hydrogen bonding using the flash nanocomplexation (FNC) process, resulting in a high L-DOPA-loading capacity and uniform size in a scalable manner. Pharmacodynamics analysis in a PD rat model demonstrated that the levels of dopamine and tyrosine hydroxylase, which indicate the dopaminergic neuron functions, were increased by 2- and 4-fold, respectively. Movement disorders and cerebral oxidative stress of the rats were significantly improved. This formulation exhibited a high degree of biocompatibility as evidenced by lack of induced inflammation or other pathological changes in major organs. This antioxidative and drug-delivery platform administered through the brain-lymphatic vasculature shows promise for clinical treatment of the PD.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Non-invasive delivery of levodopa-loaded nanoparticles to the brain via lymphatic vasculature to enhance treatment of Parkinson’s disease

Show Author's information Tianqi Nie1,§Zhiyu He2,§( )Jinchang Zhu3Kuntao Chen3Gregory P. Howard4,5Jesus Pacheco-Torres6Il Minn5,6Pengfei Zhao1Zaver M. Bhujwalla6Hai-Quan Mao3,4,5,7( )Lixin Liu1Yongming Chen1( )
School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA

§ Tianqi Nie and Zhiyu He contributed equally to this work.

Abstract

Levodopa (L-DOPA), a precursor of dopamine, is commonly prescribed for the treatment of the Parkinson’s disease (PD). However, oral administration of levodopa results in a high level of homocysteine in the peripheral circulation, thereby elevating the risk of cardiovascular disease, and limiting its clinical application. Here, we report a non-invasive method to deliver levodopa to the brain by delivering L-DOPA-loaded sub-50 nm nanoparticles via brain-lymphatic vasculature. The hydrophilic L-DOPA was successfully encapsulated into nanoparticles of tannic acid (TA)/polyvinyl alcohol (PVA) via hydrogen bonding using the flash nanocomplexation (FNC) process, resulting in a high L-DOPA-loading capacity and uniform size in a scalable manner. Pharmacodynamics analysis in a PD rat model demonstrated that the levels of dopamine and tyrosine hydroxylase, which indicate the dopaminergic neuron functions, were increased by 2- and 4-fold, respectively. Movement disorders and cerebral oxidative stress of the rats were significantly improved. This formulation exhibited a high degree of biocompatibility as evidenced by lack of induced inflammation or other pathological changes in major organs. This antioxidative and drug-delivery platform administered through the brain-lymphatic vasculature shows promise for clinical treatment of the PD.

Keywords: Parkinson’s disease, levodopa, brain delivery, cerebral lymphatic vasculature

References(43)

[1]
Calabresi, P.; Di Filippo, M.; Ghiglieri, V.; Tambasco, N.; Picconi, B. Levodopa-induced dyskinesias in patients with Parkinson’s disease: Filling the bench-to-bedside gap. Lancet Neurol. 2010, 9, 1106-1117.
[2]
Poewe, W.; Antonini, A.; Zijlmans, J. C.; Burkhard, P. R.; Vingerhoets, F. Levodopa in the treatment of Parkinson’s disease: An old drug still going strong. Clin. Interv. Aging 2010, 5, 229-238.
[3]
Smith, Y.; Wichmann, T.; Factor, S. A.; DeLong, M. R. Parkinson’s disease therapeutics: New developments and challenges since the introduction of levodopa. Neuropsychopharmacology 2012, 37, 213-246.
[4]
Müller, T.; Muhlack, S. Acute Homocysteine rise after repeated levodopa application in patients with Parkinson’s disease. Parkinsonism Relat. Disord. 2010, 16, 688-689.
[5]
Günaydın, Z. Y.; Özer, F. F.; Karagöz, A.; Bektaş, O.; Karataş, M. B.; Vural, A.; Bayramoğlu, A.; Çelik, A.; Yaman, M. Evaluation of cardiovascular risk in patients with Parkinson disease under levodopa treatment. J. Geriatr. Cardiol. 2016, 13, 75-80.
[6]
Contin, M.; Martinelli, P. Pharmacokinetics of levodopa. J. Neurol. 2010, 257, S253-S261.
[7]
LeWitt, P. A. Levodopa therapy for Parkinson’s disease: Pharmacokinetics and pharmacodynamics. Mov. Disord. 2015, 30, 64-72.
[8]
Tolosa, E.; Hernández, B.; Linazasoro, G.; López-Lozano, J. J.; Mir, P.; Marey, J.; Kulisevsky, J. Efficacy of levodopa/crbidopa/entacapone versus levodopa/carbidopa in patients with early Parkinson’s disease experiencing mild wearing-off: A randomised, double-blind trial. J. Neural Transm. 2014, 121, 357-366.
[9]
Liu, L. H.; Guo, K.; Lu, J.; Venkatraman, S. S.; Luo, D.; Ng, K. C.; Ling, E. A.; Moochhala, S.; Yang, Y. Y. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials 2008, 29, 1509-1517.
[10]
Qin, Y.; Chen, H. L.; Yuan, W. M.; Kuai, R.; Zhang, Q. Y.; Xie, F. L.; Zhang, L.; Zhang, Z. R.; Liu, J.; He, Q. Liposome formulated with TAT-modified cholesterol for enhancing the brain delivery. Int. J. Pharm. 2011, 419, 85-95.
[11]
van Rooy, I.; Mastrobattista, E.; Storm, G.; Hennink, W. E.; Schiffelers, R. M. Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. J. Control. Release 2011, 150, 30-36.
[12]
Da Mesquita, S.; Fu, Z. X.; Kipnis, J. The meningeal lymphatic system: A new player in neurophysiology. Neuron 2018, 100, 375-388.
[13]
Louveau, A.; Smirnov, I.; Keyes, T. J.; Eccles, J. D.; Rouhani, S. J.; Peske, J. D.; Derecki, N. C.; Castle, D.; Mandell, J. W.; Lee, K. S. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 523, 337-341.
[14]
Zhao, P. F.; Le, Z. C.; Liu, L. X.; Chen, Y. M. Therapeutic delivery to the brain via the lymphatic vasculature. Nano Lett. 2020, 20, 5415-5420.
[15]
Pahuja, R.; Seth, K.; Shukla, A.; Shukla, R. K.; Bhatnagar, P.; Chauhan, L. K. S.; Saxena, P. N.; Arun, J.; Chaudhari, B. P.; Patel, D. K. et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano 2015, 9, 4850-4871.
[16]
Xiang, Y.; Wu, Q.; Liang, L.; Wang, X. Q.; Wang, J. C.; Zhang, X.; Pu, X. P.; Zhang, Q. Chlorotoxin-modified stealth liposomes encapsulating levodopa for the targeting delivery against the Parkinson’s disease in the MPTP-induced mice model. J. Drug Target. 2012, 20, 67-75.
[17]
Ngwuluka, N. C.; Choonara, Y. E.; Kumar, P.; du Toit, L. C.; Modi, G.; Pillay, V. An optimized gastroretentive nanosystem for the delivery of levodopa. Int. J. Pharm. 2015, 494, 49-65.
[18]
Huang, X. F.; Jia, J. W.; Wang, Z. K.; Hu, Q. L. A novel chitosan-based sponge coated with self-assembled thrombin/tannic acid multilayer films as a hemostatic dressing. Chin. J. Polym. Sci. 2015, 33, 284-290.
[19]
Wang, X. Q.; Yucel, T.; Lu, Q.; Hu, X.; Kaplan, D. L. Silk nanospheres and microspheres from silk/PVA blend films for drug delivery. Biomaterials 2010, 31, 1025-1035.
[20]
Bobo, D.; Robinson, K. J.; Islam, J.; Thurecht, K. J.; Corrie, S. R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33, 2373-2387.
[21]
He, Z. Y.; Hu, Y. Z.; Gui, Z. Z.; Zhou, Y.; Nie, T. Q.; Zhu, J. C.; Liu, Z. J.; Chen, K. T.; Liu, L. X.; Leong, K. W. et al. Sustained release of exendin-4 from tannic acid/Fe (III) nanoparticles prolongs blood glycemic control in a mouse model of type II diabetes. J. Control. Release 2019, 301, 119-128.
[22]
He, Z. Y.; Nie, T. Q.; Hu, Y. Z.; Zhou, Y.; Zhu, J. C.; Liu, Z. J.; Liu, L. X.; Leong, K. W.; Chen, Y. M.; Mao, H. Q. A polyphenol-metal nanoparticle platform for tunable release of liraglutide to improve blood glycemic control and reduce cardiovascular complications in a mouse model of type II diabetes. J. Control. Release 2020, 318, 86-97.
[23]
Liu, H.; Chen, H. L.; Liu, Z. J.; Le, Z. C.; Nie, T. Q.; Qiao, D. D.; Su, Y.; Mai, H. Q.; Chen, Y. M.; Liu, L. X. Therapeutic nanovaccines sensitize EBV-associated tumors to checkpoint blockade therapy. Biomaterials 2020, 255, 120158.
[24]
Le, Z. C.; Chen, Y. T.; Han, H. H.; Tian, H. K.; Zhao, P. F.; Yang, C. B.; He, Z. Y.; Liu, L. X.; Leong, K. W.; Mao, H. Q. et al. Hydrogen-bonded tannic acid-based anticancer nanoparticle for enhancement of oral chemotherapy. ACS Appl. Mater. Interfaces 2018, 10, 42186-42197.
[25]
Ke, X. Y.; Tang, H. Y.; Mao, H. Q. Effective encapsulation of curcumin in nanoparticles enabled by hydrogen bonding using flash nanocomplexation. Int. J. Pharm. 2019, 564, 273-280.
[26]
Chow, S. F.; Sun, C. C.; Chow, A. H. L. Assessment of the relative performance of a confined impinging jets mixer and a multi-inlet vortex mixer for curcumin nanoparticle production. Eur. J. Pharm. Biopharm. 2014, 88, 462-471.
[27]
Zhu, Z. X. Flash nanoprecipitation: Prediction and enhancement of particle stability via drug structure. Mol. Pharmaceutics 2014, 11, 776-786.
[28]
Hennig, J.; Friedburg, H. Clinical applications and methodological developments of the rare technique. Magn. Reson. Imaging 1988, 6, 391-395.
[29]
Hennig, J.; Nauerth, A.; Friedburg, H. RARE imaging: A fast imaging method for clinical MR. Magn. Reson. Med. 1986, 3, 823-833.
[30]
Zhu, Y. Z.; Zhang, J.; Zeng, Y. J. Overview of tyrosine hydroxylase in Parkinson’s disease. CNS Neurol. Disord.: Drug Targets 2012, 11, 350-358.
[31]
Nie, T. Q.; He, Z. Y.; Zhou, Y.; Zhu, J. C.; Chen, K. T.; Liu, L. X.; Leong, K. W.; Mao, H. Q.; Chen, Y. M. Surface coating approach to overcome mucosal entrapment of DNA nanoparticles for oral gene delivery of glucagon-like peptide. ACS Appl. Mater. Interfaces 2019, 11, 29593-29603.
[32]
Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to imageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671-675.
[33]
Dulińska-Litewka, J.; Łazarczyk, A.; Halubiec, P.; Szafrański, O.; Karnas, K.; Karewicz, A. Superparamagnetic iron oxide nanoparticles—current and prospective medical applications. Materials 2019, 12, 617.
[34]
Kulkarni, S. A.; Feng, S. S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm. Res. 2013, 30, 2512-2522.
[35]
Nie, T. Q.; He, Z. Y.; Zhu, J. C.; Liu, L. X.; Chen, Y. M. One-pot synthesis of PEGylated lipoplexes to facilitate mucosal permeation for oral insulin gene delivery. Adv. Ther. 2020, 3, 2000016.
[36]
Puspita, L.; Chung, S. Y.; Shim, J. W. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain 2017, 10, 53.
[37]
Halliday, G. M.; McCann, H. The progression of pathology in Parkinson’s disease. Ann. N. Y. Acad. Sci. 2010, 1184, 188-195.
[38]
Freyssin, A.; Page, G.; Fauconneau, B.; Bilan, A. R. Natural polyphenols effects on protein aggregates in Alzheimer’s and Parkinson’s prion-like diseases. Neural Regener. Res. 2018, 13, 955-961.
[39]
Caruana, M.; Högen, T.; Levin, J.; Hillmer, A.; Giese, A.; Vassallo, N. Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds. FEBS Lett. 2011, 585, 1113-1120.
[40]
Vaillancourt, D. E.; Spraker, M. B.; Prodoehl, J.; Abraham, I.; Corcos, D. M.; Zhou, X. J.; Comella, C. L.; Little, D. M. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 2009, 72, 1378-1384.
[41]
Aarsland, D.; Marsh, L.; Schrag, A. Neuropsychiatric symptoms in Parkinson’s disease. Mov. Disord. 2009, 24, 2175-2186.
[42]
Beach, T. G.; Adler, C. H.; Sue, L. I.; Peirce, J. B.; Bachalakuri, J.; Dalsing-Hernandez, J. E.; Lue, L. F.; Caviness, J. N.; Connor, D. J.; Sabbagh, M. N. et al. Reduced striatal tyrosine hydroxylase in incidental lewy body disease. Acta Neuropathol. 2008, 115, 445-451.
[43]
Paul, J.; Nandhu, M. S.; Kuruvilla, K. P.; Paulose, C. S. Dopamine D1 and D2 receptor subtypes functional regulation in corpus striatum of unilateral rotenone lesioned Parkinson’s rat model: Effect of serotonin, dopamine and norepinephrine. Neurol. Res. 2010, 32, 918-924.
File
12274_2020_3280_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 September 2020
Revised: 27 November 2020
Accepted: 02 December 2020
Published: 05 January 2021
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was partially supported by Natural Science Foundation of China (No. 51533009), the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2013S086) and the key Area Research and Development of Guangzhou (No. 202007020006).

Return