Journal Home > Volume 14 , Issue 8

Glucose-responsive insulin delivery systems show great promise to improve therapeutic outcomes and quality of life for people with diabetes. Herein, a new microneedle-array patch containing pH-sensitive insulin-loaded nanoparticles (NPs) (SNP(I)) together with glucose oxidase (GOx)- and catalase (CAT)-loaded pH-insensitive NPs (iSNP(G+C)) is constructed for transcutaneous glucose-responsive insulin delivery. SNP(I) are prepared via double emulsion from a pH-sensitive amphiphilic block copolymer, and undergo rapid dissociation to promote insulin release at a mild acidic environment induced by GOx in iSNP(G+C) under hyperglycemic conditions. CAT in iSNP(G+C) can further consume excess H2O2 generated during GOx oxidation, and thus reduce the risk of inflammation toward the normal skin. The in vivo study on type 1 diabetic mice demonstrates that the platform can effectively regulate blood glucose levels within normal ranges for a prolonged period.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin delivery

Show Author's information Feng-Qin Luo1,§Guojun Chen2,§Wei Xu3Daojia Zhou2Jia-Xian Li1Yong-Cong Huang3Run Lin4( )Zhen Gu2,7( )Jin-Zhi Du1,3,5,6( )
Guangzhou First People’s Hospital, and Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095-1413, USA
School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
Department of Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China

§ Feng-Qin Luo and Guojun Chen contributed equally to this work.

Abstract

Glucose-responsive insulin delivery systems show great promise to improve therapeutic outcomes and quality of life for people with diabetes. Herein, a new microneedle-array patch containing pH-sensitive insulin-loaded nanoparticles (NPs) (SNP(I)) together with glucose oxidase (GOx)- and catalase (CAT)-loaded pH-insensitive NPs (iSNP(G+C)) is constructed for transcutaneous glucose-responsive insulin delivery. SNP(I) are prepared via double emulsion from a pH-sensitive amphiphilic block copolymer, and undergo rapid dissociation to promote insulin release at a mild acidic environment induced by GOx in iSNP(G+C) under hyperglycemic conditions. CAT in iSNP(G+C) can further consume excess H2O2 generated during GOx oxidation, and thus reduce the risk of inflammation toward the normal skin. The in vivo study on type 1 diabetic mice demonstrates that the platform can effectively regulate blood glucose levels within normal ranges for a prolonged period.

Keywords: drug delivery, pH-sensitive, diabetes, glucose-responsive, microneedle

References(52)

[1]
Chatterjee, S.; Khunti, K.; Davies, M. J. Type 2 diabetes. Lancet, 2017, 389, 2239-2251.
[2]
Atkinson, M. A.; Eisenbarth, G. S.; Michels, A. W. Type 1 diabetes. Lancet, 2014, 383, 69-82.
[3]
International Diabetes Federation. IDF Diabetes Atlas, 9th edition 2019 [Online]. Brussels, Belgium: Internationa Diabetes Federation, 2019. https://www.diabetesatlas.org (accessed Oct 10, 2020).
[4]
Owens, D. R.; Zinman, B.; Bolli, G. B. Insulins today and beyond. Lancet, 2001, 358, 739-746.
[5]
Bluestone, J. A.; Herold, K.; Eisenbarth, G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature, 2010, 464, 1293-1300.
[6]
Karges, B.; Binder, E.; Rosenbauer, J. Complications with insulin pump therapy vs insulin injection therapy-reply. JAMA, 2018, 319, 503-504.
[7]
Yeh, H. C.; Brown, T. T.; Maruthur, N.; Ranasinghe, P.; Berger, Z.; Suh, Y. D.; Wilson, L. M.; Haberl, E. B.; Brick, J.; Bass, E. B. et al. Comparative effectiveness and safety of methods of insulin delivery and glucose monitoring for diabetes mellitus: A systematic review and meta-analysis. Ann. Intern. Med., 2012, 157, 336-347.
[8]
Writing Team for the Diabetes Control; Complications Trial/Epidemiology of Diabetes Interventions; Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: The epidemiology of diabetes interventions and complications (EDIC) study. JAMA, 2003, 290, 2159-2167.
[9]
Donnelly, L. A.; Morris, A. D.; Frier, B. M.; Ellis, J. D.; Donnan, P. T.; Durrant, R.; Band, M. M.; Reekie, G.; Leese, G. P.; DARTS/MEMO Collaboration. Frequency and predictors of hypoglycaemia in Type 1 and insulin-treated Type 2 diabetes: A population-based study. Diabet. Med., 2005, 22, 749-755.
[10]
Shen, D.; Yu, H. J.; Wang, L.; Khan, A.; Haq, F.; Chen, X.; Huang, Q.; Teng, L. S. Recent progress in design and preparation of glucose-responsive insulin delivery systems. J. Control. Release, 2020, 321, 236-258.
[11]
Yu, J. C.; Zhang, Y. Q.; Yan, J. J.; Kahkoska, A. R.; Gu, Z. Advances in bioresponsive closed-loop drug delivery systems. Int. J. Pharm., 2018, 544, 350-357.
[12]
Bakh, N. A.; Cortinas, A. B.; Weiss, M. A.; Langer, R. S.; Anderson, D. G.; Gu, Z.; Dutta, S.; Strano, M. S. Glucose-responsive insulin by molecular and physical design. Nat. Chem., 2017, 9, 937-944.
[13]
Ravaine, V.; Ancla, C.; Catargi, B. Chemically controlled closed-loop insulin delivery. J. Control. Release, 2008, 132, 2-11.
[14]
Jamaledin, R.; Makvandi, P.; Yiu, C. K. Y.; Agarwal, T.; Vecchione, R.; Sun, W. J.; Maiti, T. K.; Tay, F. R.; Netti, P. A. Engineered microneedle patches for controlled release of active compounds: recent advances in release profile tuning. Adv. Ther., 2020, in press, .
[15]
Jamaledin, R.; Yiu, C. K. Y.; Zare, E. N.; Niu, L. N.; Vecchione, R.; Chen, G. J.; Gu, Z.; Tay, F. R.; Makvandi, P. Advances in antimicrobial microneedle patches for combating infections. Adv. Mater., 2020, 32, 2002129.
[16]
Steil, G. M.; Rebrin, K.; Darwin, C.; Hariri, F.; Saad, M. F. Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes, 2006, 55, 3344-3350.
[17]
Chen, X.; Wang, L.; Yu, H. J.; Li, C. J.; Feng, J. Y.; Haq, F.; Khan, A.; Khan, R. U. Preparation, properties and challenges of the microneedles-based insulin delivery system. J. Control. Release, 2018, 288, 173-188.
[18]
Veiseh, O.; Tang, B. C.; Whitehead, K. A.; Anderson, D. G.; Langer, R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov., 2015, 14, 45-57.
[19]
Weissberg-Benchell J.; Antisdel-Lomaglio J.; Seshadri R. Insulin pump therapy: A meta-analysis. Diabetes Care, 2003, 26, 1079-1087.
[20]
Wang, J. Q.; Wang, Z. J.; Yu, J. C.; Kahkoska, A. R.; Buse, J. B.; Gu, Z. Glucose-responsive insulin and delivery systems: Innovation and translation. Adv. Mater., 2020, 32, 1902004.
[21]
Zhang, Y. Q.; Yu, J. C.; Kahkoska, A. R.; Wang, J. Q.; Buse, J. B.; Gu, Z. Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev., 2019, 139, 51-70.
[22]
Gordijo, C. R.; Koulajian, K.; Shuhendler, A. J.; Bonifacio, L. D.; Huang, H. Y.; Chiang, S.; Ozin, G. A.; Giacca, A.; Wu, X. Y. Nanotechnology-enabled closed loop insulin delivery device: In vitro and in vivo evaluation of glucose-regulated insulin release for diabetes control. Adv. Funct. Mater., 2011, 21, 73-82.
[23]
Jin, X.; Zhu, D. D.; Chen, B. Z.; Ashfaq, M.; Guo, X. D. Insulin delivery systems combined with microneedle technology. Adv. Drug Deliv. Rev., 2018, 127, 119-137.
[24]
Wu, Q.; Wang, L.; Yu, H. J.; Wang, J. J.; Chen, Z. F. Organization of glucose-responsive systems and their properties. Chem. Rev., 2011, 111, 7855-7875.
[25]
Yu, J. C.; Zhang, Y. Q.; Wang, J. Q.; Wen, D.; Kahkoska, A. R.; Buse, J. B.; Gu, Z. Glucose-responsive oral insulin delivery for postprandial glycemic regulation. Nano Res., 2019, 12, 1539-1545.
[26]
Gu, Z.; Dang, T. T.; Ma, M. L.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y. Z.; Zhang, Y. L.; Anderson, D. G. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano, 2013, 7, 6758-6766.
[27]
Gu, Z.; Aimetti, A. A.; Wang, Q.; Dang, T. T.; Zhang, Y. L.; Veiseh, O.; Cheng, H.; Langer, R. S.; Anderson, D. G. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano, 2013, 7, 4194-4201.
[28]
Podual, K.; Doyle, F. J.; Peppas, N. A. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly (ethylene glycol) grafts. J. Control. Release, 2000, 67, 9-17.
[29]
Chou, D. H. C.; Webber, M. J.; Tang, B. C.; Lin, A. B.; Thapa, L. S.; Deng, D.; Truong, J. V.; Cortinas, A. B.; Langer, R.; Anderson, D. G. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl. Acad. Sci. USA, 2015, 112, 2401-2406.
[30]
Huang, Q.; Wang, L.; Yu, H. J.; Ur-Rahman, K. Advances in phenylboronic acid-based closed-loop smart drug delivery system for diabetic therapy. J. Control. Release, 2019, 305, 50-64.
[31]
Yu, J. C.; Wang, J. Q.; Zhang, Y. Q.; Chen, G. J.; Mao, W. W.; Ye, Y. Q.; Kahkoska, A. R.; Buse, J. B.; Langer, R.; Gu, Z. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng., 2020, 4, 499-506.
[32]
Matsumoto, A.; Tanaka, M.; Matsumoto, H.; Ochi, K.; Moro-oka, Y.; Kuwata, H.; Yamada, H.; Shirakawa, I.; Miyazawa, T.; Ishii, H. et al. Synthetic “smart gel” provides glucose-responsive insulin delivery in diabetic mice. Sci. Adv., 2017, 3, eaaq0723.
[33]
Matsumoto, A.; Ishii, T.; Nishida, J.; Matsumoto, H.; Kataoka, K.; Miyahara, Y. A synthetic approach toward a self-regulated insulin delivery system. Angew. Chem., Int. Ed., 2012, 51, 2124-2128.
[34]
Wu, S. S.; Huang, X.; Du, X. Z. Glucose-and pH-responsive controlled release of cargo from protein-gated carbohydrate-functionalized mesoporous silica nanocontainers. Angew. Chem., Int. Ed., 2013, 52, 5580-5584.
[35]
Wang, J. Q.; Yu, J. C.; Zhang, Y. Q.; Zhang, X. D.; Kahkoska, A. R.; Chen, G. J.; Wang, Z. J.; Sun, W. J.; Cai, L. L.; Chen, Z. W. et al. Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Sci. Adv., 2019, 5, eaaw4357.
[36]
Yu, J. C.; Zhang, Y. Q.; Sun, W. J.; Kahkoska, A. R.; Wang, J. Q.; Buse, J. B.; Gu, Z. Insulin-responsive glucagon delivery for prevention of hypoglycemia. Small, 2017, 13, 1603028.
[37]
Wang, C.; Ye, Y. Q.; Sun, W. J.; Yu, J. C.; Wang, J. Q.; Lawrence, D. S.; Buse, J. B.; Gu, Z. Red blood cells for glucose-responsive insulin delivery. Adv. Mater., 2017, 29, 1606617.
[38]
Wang, J. Q.; Yu, J. C.; Zhang, Y. Q.; Kahkoska, A. R.; Wang, Z. J.; Fang, J.; Whitelegge, J. P.; Li, S.; Buse, J. B.; Gu, Z. Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Proc. Natl. Acad. Sci. USA, 2019, 116, 10744-10748.
[39]
Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L. Glucose oxidase-An overview. Biotechnol. Adv., 2009, 27, 489-501.
[40]
Zhang, G. Y.; Ji, Y.; Li, X. L.; Wang, X. Y.; Song, M. M.; Gou, H. L.; Gao, S.; Jia, X. D. Polymer-covalent organic frameworks composites for glucose and pH dual-responsive insulin delivery in mice. Adv. Healthc. Mater., 2020, 9, 2000221.
[41]
Zuo, M. Z.; Qian, W. R.; Xu, Z. Q.; Shao, W.; Hu, X. Y.; Zhang, D. M.; Jiang, J. L.; Sun, X. Q.; Wang, L. Y. Multiresponsive supramolecular theranostic nanoplatform based on pillar[5]arene and diphenylboronic acid derivatives for integrated glucose sensing and insulin delivery. Small, 2018, 14, 1801942.
[42]
Hu, X. L.; Yu, J. C.; Qian, C. G; Lu, Y.; Kahkoska, A. R.; Xie, Z. G.; Jing, X. B.; Buse, J. B.; Gu, Z. H2O2-responsive vesicles integrated with transcutaneous patches for glucose-mediated insulin delivery. ACS Nano, 2017, 11, 613-620.
[43]
Zhang, Y. Q.; Wang, J. Q.; Yu, J. C.; Wen, D.; Kahkoska, A. R.; Lu, Y.; Zhang, X. D.; Buse, J. B.; Gu, Z. Bioresponsive microneedles with a sheath structure for H2O2 and pH cascade-triggered insulin delivery. Small, 2018, 14, 1704181.
[44]
Wang, J. Q.; Ye, Y. Q.; Yu, J. C.; Kahkoska, A. R.; Zhang, X. D.; Wang, C.; Sun, W. J.; Corder, R. D.; Chen, Z. W.; Khan, S. A. et al. Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano, 2018, 12, 2466-2473.
[45]
Yu, J. C.; Zhang, Y. Q.; Ye, Y. Q.; DiSanto, R.; Sun, W. J.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl. Acad. Sci. USA, 2015, 112, 8260-8265.
[46]
Yu, J. C.; Qian, C. G.; Zhang, Y. Q.; Cui, Z.; Zhu, Y.; Shen, Q. D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery. Nano Lett., 2017, 17, 733-739.
[47]
Zhang, C.; Hong, S.; Liu, M. D.; Yu, W. Y.; Zhang, M. K.; Zhang, L.; Zeng, X.; Zhang, X. Z. pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery. J. Control. Release, 2020, 320, 159-167.
[48]
Wu, W. T.; Mitra, N.; Yan, E. C. Y.; Zhou, S. Q. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. ACS Nano, 2010, 4, 4831-4839.
[49]
Volpatti, L. R.; Matranga, M. A.; Cortinas, A. B.; Delcassian, D.; Daniel, K. B.; Langer, R.; Anderson, D. G. Glucose-responsive nanoparticles for rapid and extended self-regulated insulin delivery. ACS Nano, 2020, 14, 488-497.
[50]
Zhou, K. J.; Wang, Y. G.; Huang, X. N.; Luby-Phelps, K.; Sumer, B. D.; Gao, J. M. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem., Int. Ed., 2011, 50, 6109-6114.
[51]
Lončar, N.; Fraaije, M. W. Catalases as biocatalysts in technical applications: current state and perspectives. Appl. Microbiol. Biotechnol., 2015, 99, 3351-3357.
[52]
Chen, G. J.; Chen, Z. T.; Wen, D.; Wang, Z. J.; Li, H. J.; Zeng, Y.; Dotti, G.; Wirz, R. E.; Gu, Z. Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proc. Natl. Acad. Sci. USA, 2020, 117, 3687-3692.
File
12274_2020_3273_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 October 2020
Revised: 24 November 2020
Accepted: 30 November 2020
Published: 05 January 2021
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by National Key R&D Program of China (No. 2017YFA0205600), National Natural Science Foundation of China (Nos. 31771091 and 51922043), Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2017A030306018), Guangdong Provincial Programs (Nos. 2017ZT07S054 and 2017GC010304), Outstanding Scholar Program of Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) (No. 2018GZR110102001), Guangdong Natural Science Foundation (No. 2018A030310285), Science and Technology Program of Guangzhou (Nos. 201902020018, 201804020060, and 201904010398), and Fundamental Research Funds for Central Universities, National Science Foundation (No. 1919285) and American Diabetes Association (No. 1-15-ACE-21).

Return