Journal Home > Volume 14 , Issue 8

Modulating the surface coordination environment of Pt based nanocrystals at the atomic level is of great importance to obtain good electrocatalytic performance. Given the fundamental understandings of surface structure degeneration of Pt based nanocrystals, introducing a weak electronegative element to the surface of Pt-based catalysts is beneficial for suppressing surface passivation and improving hydrogen evolution reaction performance of Pt. Density functional theory results reveal that the energy barrier of water dissociation process can be greatly reduced by using Se element as the surface modifier to replace the O. This hypothesis is further validated by experiments that ultralong Pt85Mo15-Se nanowires were fabricated to suppress the excessive passivation behavior of transition metals of Pt based alloy. The Pt85Mo15-Se nanowires exhibit higher activity with 4.98 times the specific activity and 4.87 times the mass activity of commercial Pt/C, as well as a better stability towards alkaline hydrogen evolution reaction. The deep exploration of X-ray photoelectron spectroscopy and theoretical calculations disclose that Se element could maintain the electron-rich state around the electronic orbit of Pt. This study provides a new insight to advance the fundamental understanding on electrocatalytic materials, which exhibits a promising approach to protect the surface chemical environment of Pt based nanocrystals.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Suppressing the surface passivation of Pt-Mo nanowires via constructing Mo-Se coordination for boosting HER performance

Show Author's information Lei Yu1Tingting Zhou1Shuhua Cao1Xishi Tai1Lili Liu1Yao Wang2( )
School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

Abstract

Modulating the surface coordination environment of Pt based nanocrystals at the atomic level is of great importance to obtain good electrocatalytic performance. Given the fundamental understandings of surface structure degeneration of Pt based nanocrystals, introducing a weak electronegative element to the surface of Pt-based catalysts is beneficial for suppressing surface passivation and improving hydrogen evolution reaction performance of Pt. Density functional theory results reveal that the energy barrier of water dissociation process can be greatly reduced by using Se element as the surface modifier to replace the O. This hypothesis is further validated by experiments that ultralong Pt85Mo15-Se nanowires were fabricated to suppress the excessive passivation behavior of transition metals of Pt based alloy. The Pt85Mo15-Se nanowires exhibit higher activity with 4.98 times the specific activity and 4.87 times the mass activity of commercial Pt/C, as well as a better stability towards alkaline hydrogen evolution reaction. The deep exploration of X-ray photoelectron spectroscopy and theoretical calculations disclose that Se element could maintain the electron-rich state around the electronic orbit of Pt. This study provides a new insight to advance the fundamental understanding on electrocatalytic materials, which exhibits a promising approach to protect the surface chemical environment of Pt based nanocrystals.

Keywords: hydrogen evolution reaction, Pt based alloys, electron effect, interfacial synergy, water dissociation

References(45)

[1]
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.
[2]
Wang, C. Y.; Yang, C. H.; Zhang, Z. C. Unraveling molecular-level mechanisms of reactive facet of carbon nitride single crystals photocatalyzing overall water splitting. Rare Met. 2020, 39, 1353-1355.
[3]
Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Chen, B.; Zhu, Y. H.; Gong, Y.; Saleem, F.; Xi, S. B.; Du, Y. H.; Borgna, A. et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1801741.
[4]
Zheng, X. R.; Cao, Y. H.; Han, X. P.; Liu, H.; Wang, J. H.; Zhang, Z. J.; Wu, X. W.; Zhong, C.; Hu, W. B.; Deng, Y. D. Pt embedded Ni3Se2@NiOOH core-shell dendrite-like nanoarrays on nickel as bifunctional electrocatalysts for overall water splitting. Sci. China Mater. 2019, 62, 1096-1104.
[5]
Shao, Q.; Li, F. M.; Chen, Y.; Huang, X. Q. The advanced designs of high-performance platinum-based electrocatalysts: Recent progresses and challenges. Adv. Mater. Inter. 2018, 5, 1800486.
[6]
Zhang, J. T.; Sui, R.; Xue, Y. R.; Wang, X. D.; Pei, J. J.; Liang, X.; Zhuang, Z. B. Direct synthesis of parallel doped N-MoP/N-CNT as highly active hydrogen evolution reaction catalyst. Sci. China Mater. 2019, 62, 690-698.
[7]
Cao, Z. M.; Chen, Q. L.; Zhang, J. W.; Li, H. Q.; Jiang, Y. Q.; Shen, S. Y.; Fu, G.; Lu, B. A.; Xie, Z. X.; Zheng, L. S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 2017, 8, 15131.
[8]
Lao, M. M.; Rui, K.; Zhao, G. Q.; Cui, P. X.; Zheng, X. S.; Dou, S. X.; Sun, W. P. Platinum/nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions. Angew. Chem., Int. Ed. 2019, 58, 5432-5437.
[9]
Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859-12863.
[10]
Wang, P. T.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S. J.; Lu, G.; Yao, J. J.; Huang, X. Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 2017, 8, 14580.
[11]
Zhang, Z. C.; Xu, B.; Wang, X. Engineering nanointerfaces for nanocatalysis. Chem. Soc. Rev. 2014, 43, 7870-7886.
[12]
Nosheen, F.; Wasfi, N.; Aslam, S.; Anwar, T.; Hussain, S.; Hussain, N.; Shah, S. N.; Shaheen, N.; Ashraf, A.; Zhu, Y. T. et al. Ultrathin Pd-based nanosheets: Syntheses, properties and applications. Nanoscale 2020, 12, 4219-4237.
[13]
Qin, Y. C.; Zhang, W. L.; Guo, K.; Liu, X. B.; Liu, J. Q.; Liang, X. Y.; Wang, X. P.; Gao, D. W.; Gan, L. Y.; Zhu, Y. T. et al. Fine-tuning intrinsic strain in penta-twinned Pt-Cu-Mn nanoframes boosts oxygen reduction catalysis. Adv. Funct. Mater. 2020, 30, 1910107.
[14]
Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.
[15]
Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046-9050.
[16]
Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909-913.
[17]
Kirchhoff, B.; Braunwarth, L.; Jung, C.; Jónsson, H.; Fantauzzi, D.; Jacob, T. Simulations of the oxidation and degradation of platinum electrocatalysts. Small 2020, 16, 1905159.
[18]
Xu, Y. C.; Cui, X. Q.; Wei, S. T.; Zhang, Q. H.; Gu, L.; Meng, F. Q.; Fan, J. C.; Zheng, W. T. Highly active zigzag-like Pt-Zn alloy nanowires with high-index facets for alcohol electrooxidation. Nano Res. 2019, 12, 1173-1179.
[19]
Li, H. Y.; Wu, X. S.; Tao, X. L.; Lu, Y.; Wang, Y. W. Direct synthesis of ultrathin Pt nanowire arrays as catalysts for methanol oxidation. Small 2020, 16, 2001135.
[20]
Fu, X. Y.; Wan, C. Z.; Zhang, A. X.; Zhao, Z. P.; Huyan, H.; Pan, X. Q.; Du, S. J.; Duan, X. F.; Huang, Y. Pt3Ag alloy wavy nanowires as highly effective electrocatalysts for ethanol oxidation reaction. Nano Res. 2020, 13, 1472-1478.
[21]
Wang, J.; Zhang, J.; Liu, G. G.; Ling, C. Y.; Chen, B.; Huang, J. T.; Liu, X. Z.; Li, B.; Wang, A.; Hu, Z. N. et al. Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction. Nano Res. 2020, 13, 1970-1975.
[22]
Wang, Y. H.; Zhang, L.; Hu, C. L.; Yu, S. N.; Yang, P. P.; Cheng, D. F.; Zhao, Z. J.; Gong, J. L. Fabrication of bilayer Pd-Pt nanocages with sub-nanometer thin shells for enhanced hydrogen evolution reaction. Nano Res. 2019, 12, 2268-2274.
[23]
Wang, Y. H.; Chen, L.; Yu, X. M.; Wang, Y. G.; Zheng, G. F. Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets. Adv. Energy Mater. 2017, 7, 1601390.
[24]
Zhao, Y. P.; Tao, L.; Dang, W.; Wang, L. L.; Xia, M. R.; Wang, B.; Liu, M. M.; Gao, F. M.; Zhang, J. J.; Zhao, Y. F. High-indexed PtNi alloy skin spiraled on Pd nanowires for highly efficient oxygen reduction reaction catalysis. Small 2019, 15, 1900288.
[25]
Shan, A. X.; Huang, S. Y.; Zhao, H. F.; Jiang, W. G.; Teng, X. A.; Huang, Y. C.; Chen, C. P.; Wang, R. M.; Lau, W. M. Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction. Nano Res. 2020, 13, 3088-3097.
[26]
Jung, N.; Bhattacharjee, S.; Gautam, S.; Park, H. Y.; Ryu, J.; Chung, Y. H.; Lee, S. Y.; Jang, I.; Jang, J. H.; Park, S. H. et al. Organic-inorganic hybrid PtCo nanoparticle with high electrocatalytic activity and durability for oxygen reduction. NPG Asia Mater. 2016, 8, e237.
[27]
Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845-910.
[28]
Wang, S.; Xiong, L. F.; Bi, J. L.; Zhang, X. J.; Yang, G.; Yang, S. C. Structural and electronic stabilization of PtNi concave octahedral nanoparticles by P doping for oxygen reduction reaction in alkaline electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 27009-27018.
[29]
Wang, Y.; Qin, Y. C.; Zhang, X.; Dai, X. P.; Zhuo, H. Y.; Luan, C. L.; Jiang, Y.; Zhao, H. H.; Wang, H.; Huang, X. L. Promoting effect of nickel hydroxide on the electrocatalytic performance of Pt in alkaline solution. Dalton Trans. 2018, 47, 7975-7982.
[30]
Wang, Y.; Zhuo, H. Y.; Zhang, X.; Dai, X. P.; Yu, K. M.; Luan, C. L.; Yu, L.; Xiao, Y.; Li, J.; Wang, M. L. et al. Synergistic effect between undercoordinated platinum atoms and defective nickel hydroxide on enhanced hydrogen evolution reaction in alkaline solution. Nano Energy 2018, 48, 590-599.
[31]
Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanolfuel cells. Energy Environ. Sci. 2011, 4, 2736-2753.
[32]
Spendelow, J. S.; Goodpaster, J. D.; Kenis, P. J. A.; Wieckowski, A. Methanol dehydrogenation and oxidation on Pt(111) in alkaline solutions. Langmuir 2006, 22, 10457-10464.
[33]
Wang, Y.; Zhuo, H. Y.; Zhang, X.; Li, Y. R.; Yang, J. T.; Liu, Y. J.; Dai, X. P.; Li, M. X.; Zhao, H. H.; Cui, M. L. et al. Interfacial synergy of ultralong jagged Pt85Mo15-S nanowires with abundant active sites on enhanced hydrogen evolution in an alkaline solution. J. Mater. Chem. A 2019, 7, 24328-24336.
[34]
Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K.; Uchida, H.; Watanabe, M. Electronic structures of Pt-Co and Pt-Ru alloys for Co-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS. J. Phys. Chem. B 2006, 110, 23489-23496.
[35]
Liu, Z. F.; Hu, J. E.; Wang, Q.; Gaskell, K.; Frenkel, A. I.; Jackson, G. S.; Eichhorn, B. PtMo alloy and MoOx@Pt core-shell nanoparticles as highly CO-tolerant electrocatalysts. J. Am. Chem. Soc. 2009, 131, 6924-6925.
[36]
Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230-1234.
[37]
Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.
[38]
Bai, J.; Fang, C. L.; Liu, Z. H.; Chen, Y. A one-pot gold seed-assisted synthesis of gold/platinum wire nanoassemblies and their enhanced electrocatalytic activity for the oxidation of oxalic acid. Nanoscale 2016, 8, 2875-2880.
[39]
Zhang, B.; Zhu, H.; Zou, M. L.; Liu, X. R.; Yang, H.; Zhang, M.; Wu, W. W.; Yao, J. M.; Du, M. L. Design and fabrication of size-controlled Pt-Au bimetallic alloy nanostructure in carbon nanofibers: A bifunctional material for biosensors and the hydrogen evolution reaction. J. Mater. Sci. 2017, 52, 8207-8218.
[40]
Kye, J.; Shin, M.; Lim, B.; Jang, J. W.; Oh, I.; Hwang, S. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution. ACS Nano 2013, 7, 6017-6023.
[41]
Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255-2260.
[42]
Chen, L. L.; Lasia, A. Study of the kinetics of hydrogen evolution reaction on nickel-zinc alloy electrodes. J. Electrochem. Soc. 1991, 138, 3321-3328.
[43]
Ida, S.; Shiga, D.; Koinuma, M.; Matsumoto, Y. Synthesis of hexagonal nickel hydroxide nanosheets by exfoliation of layered nickel hydroxide intercalated with dodecyl sulfate ions. J. Am. Chem. Soc. 2008, 130, 14038-14039.
[44]
Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304-313.
[45]
Chen, L.; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat. Commun. 2017, 8, 14136.
File
12274_2020_3269_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 September 2020
Revised: 19 October 2020
Accepted: 29 October 2020
Published: 28 December 2020
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors gratefully acknowledge the Science Foundation of Weifang University (No. 2020BS16), the Natural Science Foundation of Shandong Province (No. ZR2019BEM017 and ZR2017MB056), and the financial support of the National Natural Science Foundation of China (No. 21802104).

Return