Journal Home > Volume 14 , Issue 8

Rational design of earth-abundant transition metal oxides catalysts is highly desirable for developing sustainable chemical processes. Herein, we demonstrate a prospective interstitial nitrogen engineering for fabricating oxygen vacancies (OVs)-rich nitrogen-doped-MnxCo3-xO4 (N-MnxCo3-xO4) oxide catalyst, in which the ratio of OVs concentration of N-MnxCo3-xO4 to Mn species is as high as 1:1, according to the characterizations of X-ray absorption (XAS) and X-ray photoelectron (XPS) spectroscopies. The promising strategy of interstitial nitrogen engineering through lattice distortion caused by the Jahn-Teller effect can significantly increase the amount of interstitial nitrogen. The resulting catalyst enables an additive-free aerobic dehydrogenation coupling of aromatic amine to afford azo compounds with > 99% yield and > 99% selectivity at 60 °C. We observed the superb catalytic activity is promoted by the enhanced oxygen mobility in OVs, which were created by the interstitial nitrogen in the catalyst matrix. The presence of interstitial nitrogen in transition metal oxides in this study shows how the manipulation of catalyst matrix can increase the OV sites to promote aerobic oxidation reaction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Jahn-Teller distortion assisted interstitial nitrogen engineering: Enhanced oxygen dehydrogenation activity of N-doped MnxCo3-xO4 hierarchical micro-nano particles

Show Author's information Yangxin Jin1,2Fengfeng Li1Peixin Cui3Yun Yang2Qingping Ke1( )Minh Ngoc Ha1,4Wangcheng Zhan5Fei Ruan1Chao Wan1Zhao Lei1Van Noi Nguyen4Wei Chen2( )Jun Tang1( )
College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
VNU Key Laboratory of Advanced Material for Green Growth, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam
Key Laboratory for Advanced Materials and Research, Institute of Industrial Catalysis School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract

Rational design of earth-abundant transition metal oxides catalysts is highly desirable for developing sustainable chemical processes. Herein, we demonstrate a prospective interstitial nitrogen engineering for fabricating oxygen vacancies (OVs)-rich nitrogen-doped-MnxCo3-xO4 (N-MnxCo3-xO4) oxide catalyst, in which the ratio of OVs concentration of N-MnxCo3-xO4 to Mn species is as high as 1:1, according to the characterizations of X-ray absorption (XAS) and X-ray photoelectron (XPS) spectroscopies. The promising strategy of interstitial nitrogen engineering through lattice distortion caused by the Jahn-Teller effect can significantly increase the amount of interstitial nitrogen. The resulting catalyst enables an additive-free aerobic dehydrogenation coupling of aromatic amine to afford azo compounds with > 99% yield and > 99% selectivity at 60 °C. We observed the superb catalytic activity is promoted by the enhanced oxygen mobility in OVs, which were created by the interstitial nitrogen in the catalyst matrix. The presence of interstitial nitrogen in transition metal oxides in this study shows how the manipulation of catalyst matrix can increase the OV sites to promote aerobic oxidation reaction.

Keywords: transition metal oxides, Jahn-Teller effect, interstitial nitrogen engineering, MnxCo3-xO4, dehydrogenation

References(45)

[1]
Liu, J. J.; Fung, V.; Wang, Y.; Du, K. M.; Zhang, S. R.; Nguyen, L.; Tang, Y.; Fan, J.; Jiang, D. D.; Tao, F. F. Promotion of catalytic selectivity on transition metal oxide through restructuring surface lattice. Appl. Catal. B-Environ. 2018, 237, 957-969.
[2]
Obligacion, J. V.; Chirik, P. J. Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration. Nat. Rev. Chem. 2018, 2, 15-34.
[3]
Wang, D.; Astruc, D. The recent development of efficient Earth-abundant transition-metal nanocatalysts. Chem. Soc. Rev. 2017, 46, 816-854.
[4]
Su, B.; Cao, Z. C.; Shi, Z. J. Exploration of earth-abundant transition metals (Fe, Co, and Ni) as catalysts in unreactive chemical bond activations. Acc. Chem. Res. 2015, 48, 886-896.
[5]
Wu, K.; Wang, X. Y.; Guo, L. L.; Xu, Y. J.; Zhou, L.; Lyu, Z. Y.; Liu, K. Y.; Si, R.; Zhang, Y.; Sun, L. D. et al. Facile synthesis of Au embedded CuOx-CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol. Nano Res. 2020, 13, 2044-2055.
[6]
Chen, F.; Sahoo, B.; Kreyenschulte, C.; Lund, H.; Zeng, M.; He, L.; Junge, K.; Beller, M. Selective cobalt nanoparticles for catalytic transfer hydrogenation of N-heteroarenes. Chem. Sci. 2017, 8, 6239-6246.
[7]
Dutta, B.; Biswas, S.; Sharma, V.; Savage, N. O.; Alpay, S. P.; Suib, S. L. Mesoporous manganese oxide catalyzed aerobic oxidative coupling of anilines to aromatic azo compounds. Angew. Chem., Int. Ed. 2016, 55, 2171-2175.
[8]
Su, H.; Zhang, K. X.; Zhang, B.; Wang, H. H.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Activating cobalt nanoparticles via the mott-schottky effect in nitrogen-rich carbon shells for base-free aerobic oxidation of alcohols to esters. J. Am. Chem. Soc. 2017, 139, 811-818.
[9]
Jagadeesh, R. V.; Junge, H.; Pohl, M. M.; Radnik, J.; Brückner, A.; Beller, M. Selective oxidation of alcohols to esters using heterogeneous Co3O4-N@C catalysts under mild conditions. J. Am. Chem. Soc. 2013, 135, 10776-10782.
[10]
Zhong, W.; Liu, H. L.; Bai, C. H.; Liao, S. J.; Li, Y. W. Base-free oxidation of alcohols to esters at room temperature and atmospheric conditions using nanoscale Co-based catalysts. ACS Catal. 2015, 5, 1850-1856.
[11]
Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.
[12]
Liu, Y. W., Xiao, C.; Huang, P. C.; Cheng, M.; Xie, Y. Regulating the charge and spin ordering of two-dimensional ultrathin solids for electrocatalytic water splitting. Chem 2018, 4, 1263-1283.
[13]
Zhang, N.; Li, X. Y.; Liu, Y. F.; Long, R.; Li, M. Q.; Chen, S. M.; Qi, Z. M.; Wang, C. M.; Song, L.; Jiang, J. et al. Defective tungsten oxide hydrate nanosheets for boosting aerobic coupling of amines: Synergistic catalysis by oxygen vacancies and Brønsted acid sites. Small 2017, 13, 1701354.
[14]
Biswas, S.; Dutta, B.; Mannodi-Kanakkithodi, A.; Clarke, R.; Song, W. Q.; Ramprasad, R.; Suib, S. L. Heterogeneous mesoporous manganese/cobalt oxide catalysts for selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Chem. Commun. 2017, 53, 11751-11754.
[15]
He, T. H.; Zeng, X. S.; Rong, S. P. The controllable synthesis of substitutional and interstitial nitrogen-doped manganese dioxide: The effects of doping sites on enhancing the catalytic activity. J. Mater. Chem. A 2020, 8, 8383-8396.
[16]
Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 127, 7507-7512.
[17]
Biswas, S.; Mullick, K.; Chen, S. Y.; Kriz, D. A.; Shakil, M. D.; Kuo, C. H.; Angeles-Boza, A. M.; Rossi, A. R.; Suib, S. L. Mesoporous copper/manganese oxide catalyzed coupling of alkynes: Evidence for synergistic cooperative catalysis. ACS Catal. 2016, 6, 5069-5080.
[18]
Huang, Y. C.; Ye, K. H.; Li, H. B.; Fan, W. J.; Zhao, F. Y.; Zhang, Y. M.; Ji, H. B. A highly durable catalyst based on CoxMn3-xO4 nanosheets for low-temperature formaldehyde oxidation. Nano Res. 2016, 9, 3881-3892.
[19]
Li, D. D.; Ruan, F.; Jin, Y. X.; Ke, Q. P.; Cao, Y. L.; Wang, H.; Wang, T. T.; Song, Y. J.; Cui, P. Design and synthesis of a highly efficient heterogeneous MnCo2O4 oxide catalyst for alcohol oxidation: DFT insight into the synergistic effect between oxygen deficiencies and bimetal species. Catal. Sci. Technol. 2019, 9, 418-424.
[20]
Gao, T. Y.; Chen, J.; Fang, W. H.; Cao, Q. E.; Su, W. P.; Dumeignil, F. Ru/MnXCe1OY catalysts with enhanced oxygen mobility and strong metal-support interaction: Exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation. J. Catal. 2018, 368, 53-68.
[21]
Yu, M. H.; Wang, Z. K.; Hou, C.; Wang, Z. L.; Liang, C. L.; Zhao, C. Y.; Tong, Y. X.; Lu, X. H.; Yang, S. H. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1602868.
[22]
Wang, Q.; Chen, L. F.; Guan, S. L.; Zhang, X.; Wang, B.; Cao, X. Z.; Yu, Z.; He, Y. F.; Evans, D. G.; Feng, J. T. et al. Ultrathin and vacancy-rich CoAl-layered double hydroxide/graphite oxide catalysts: Promotional effect of cobalt vacancies and oxygen vacancies in alcohol oxidation. ACS Catal. 2018, 8, 3104-3115.
[23]
Li, J. Q.; Mei, Z. X.; Liu, L. S.; Liang, H. L.; Azarov, A.; Kuznetsov, A.; Liu, Y. P.; Ji, A. L.; Meng, Q. B.; Du, X. L. Probing defects in nitrogen-doped Cu2O. Sci. Rep. 2014, 4, 7240.
[24]
Grirrane, A.; Corma, A.; García, H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science 2008, 322, 1661-1664.
[25]
Ke, Q. P.; Jin, Y. X.; Ruan, F.; Ha, M. N.; Li, D. D.; Cui, P. X.; Cao, Y. L.; Wang, H.; Wang, T. T.; Nguyen, V. N. et al. Boosting the activity of catalytic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over nitrogen-doped manganese oxide catalysts. Green Chem. 2019, 21, 4313-4318.
[26]
Huang, X. B.; Zheng, H. Y.; Lu, G. L.; Wang, P.; Xing, L. W.; Wang, J. J.; Wang, G. Enhanced water splitting electrocatalysis over MnCo2O4 via introduction of suitable Ce content. ACS Sustainable Chem. Eng. 2019, 7, 1169-1177.
[27]
Xu, J. S.; Sun, Y. D.; Lu, M. J.; Wang, L.; Zhang, J.; Tao, E.; Qian, J. H.; Liu, X. Y. Fabrication of the porous MnCo2O4 nanorod arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Acta Mater. 2018, 152, 162-174.
[28]
Zhang, P.; Liu, J.; Wu, J.; Wang, W.; Zhou, C.; Guo, S.; Li, S.; Yang, Y.; Chen, L. Self-assembly formation of hierarchical mixed spinel MnCo2O4 porous nanospheres confined by polypyrrole pyrolytic carbon for high-performance lithium storage. Mater. Today Energy 2020, 17, 100451.
[29]
Rehr, J. J.; Albers, R. C. Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621-654.
[30]
Joly, Y.; Bunău, O.; Lorenzo, J. E.; Galéra, R. M.; Grenier, S.; Thompson, B. Self-consistency, spin-orbit and other advances in the FDMNES code to simulate XANES and RXD experiments. J. Phys. -Conf. Ser. 2009, 190, 012007.
[31]
Zhang, H. Y.; Sui, S. H.; Zheng, X. M.; Cao, R. R.; Zhang, P. Y. One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures. Appl. Catal. B-Environ. 2019, 257, 117878.
[32]
Baer, E.; Tosoni, A. L. Formation of symmetric azo-compounds from primary aromatic amines by lead tetraacetate. J. Am. Chem. Soc. 1956, 78, 2857-2858.
[33]
Zhu, X. Y.; Rong, H. P.; Zhang, X. B.; Di, Q. M.; Shang, H. S.; Bai, B.; Liu, J. J.; Liu, J.; Xu, M.; Chen, W. X. et al. Compressive surface strained atomic-layer Cu2O on Cu@Ag nanoparticles. Nano Res. 2019, 12, 1187-1192.
[34]
Liu, Q. B.; Zhang, S. J.; Liao, J. Y.; Huang, X. M.; Zheng, Y. Y.; Li, H. MnCo2O4 film composed of nanoplates: Synthesis, characterization and its superior catalytic performance in the hydrolytic dehydrogenation of ammonia borane. Catal. Sci. Technol. 2017, 7, 3573-3579;
[35]
Che, H. W.; Liu, A. F.; Mu, J. B.; Wu, C. X.; Zhang, X. L. Template-free synthesis of novel flower-like MnCo2O4 hollow microspheres for application in supercapacitors. Ceram. Int. 2016, 42, 2416-2424.
[36]
Hu, H.; Guan, B. Y.; Xia, B. Y.; Lou, X. W. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc. 2015, 137, 5590-5595;
[37]
Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv. Mater. 2010, 22, 347-351.
[38]
Perdew, J. P.; Burke, K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[39]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[40]
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.
[41]
Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in Germanium. Phys. Rev. B 1994, 49, 14251-14269.
[42]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[43]
Badaire, S.; Cottin-Bizonne, C.; Woody, J. W.; Yang, A.; Stroock, A. D. Shape selectivity in the assembly of lithographically designed colloidal particles. J. Am. Chem. Soc. 2007, 129, 40-41
[44]
Ke, Q. P.; Yi, D.; Jin, Y. X.; Lu, F.; Zhou, B.; Zhan, F.; Yang, Y. J.; Gao, D. L.; Yan, P. F.; Wan, C. et al. Manganese doping in cobalt oxide nanorods promotes catalytic dehydrogenation. ACS Sustainable Chem. Eng. 2020, 8, 5734-5741.
[45]
Tang, J.; Cao, Y. L.; Ruan, F.; Li, F. F.; Jin, Y. X.; Ha, M. N.; Han, X. Y.; Ke, Q. P. New approach for controllable synthesis of N-MnOx microflowers and their superior catalytic performance for benzoxazole synthesis. Ind. Eng. Chem. Res. 2020, 59, 9408-9413.
File
12274_2020_3266_MOESM1_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 August 2019
Revised: 16 October 2019
Accepted: 06 November 2020
Published: 27 February 2021
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the Anhui Provincial Natural Science Foundation of China (2008085M47), "Key Program for International S&T Cooperation Projects of China" (No. 2017YFE0124300) and Anhui Provincial Science Fund for Excellent Young Scholars (gxyqZD2018034).

Return