Journal Home > Volume 14 , Issue 8

Despite nanoparticle-based drug delivery systems have aroused broad research interest in the biomedical fields, the rising challenges such as easy recognition by the immune system and low accumulation in diseased sites significantly hinder their further clinical translation. Nanoparticles wrapped in cell membrane have emerged as a distinctive strategy to overcome these limitations due to the superior marriage of natural cell membrane and artificial nanomaterials, which endow them with prominent advantages in disease diagnosis and treatment, such as targeted drug transport, prolonged drug half-life, and diminished immunogenicity and cytotoxicity. In this review, we mainly highlight and discuss the evolving progresses and advantages of cell membrane-based biomimetic nanosystems in the detection and treatment of various diseases over the past five years, including oncology, bacterial infections, brain diseases, and inflammatory diseases, which would benefit researchers in better and comprehensively understanding the complicated microenvironment of diseases and developing personalized biomimetic nanomedicines for different diseases. The current challenges and potential opportunities for the future clinical translation of cell membrane coating nanotechnology are also covered.


menu
Abstract
Full text
Outline
About this article

Biomimetic nanomedicine toward personalized disease theranostics

Show Author's information Huisong Hao1Yu Chen2( )Meiying Wu1( )
School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
School of Life Sciences, Shanghai University, Shanghai 200444, China

Abstract

Despite nanoparticle-based drug delivery systems have aroused broad research interest in the biomedical fields, the rising challenges such as easy recognition by the immune system and low accumulation in diseased sites significantly hinder their further clinical translation. Nanoparticles wrapped in cell membrane have emerged as a distinctive strategy to overcome these limitations due to the superior marriage of natural cell membrane and artificial nanomaterials, which endow them with prominent advantages in disease diagnosis and treatment, such as targeted drug transport, prolonged drug half-life, and diminished immunogenicity and cytotoxicity. In this review, we mainly highlight and discuss the evolving progresses and advantages of cell membrane-based biomimetic nanosystems in the detection and treatment of various diseases over the past five years, including oncology, bacterial infections, brain diseases, and inflammatory diseases, which would benefit researchers in better and comprehensively understanding the complicated microenvironment of diseases and developing personalized biomimetic nanomedicines for different diseases. The current challenges and potential opportunities for the future clinical translation of cell membrane coating nanotechnology are also covered.

Keywords: nanomedicine, theranostics, biomimetic, diseases, personalized

References(193)

[1]
Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R. A.; Alves, F.; Andrews, A. M.; Ashraf, S.; Balogh, L. P.; Ballerini, L.; Bestetti, A.; Brendel, C. et al. Diverse applications of nanomedicine. ACS Nano 2017, 11, 2313-2381.
[2]
Zhang, L.; Gu, F. X.; Chan, J. M.; Wang, A. Z.; Langer, R. S.; Farokhzad, O. C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008, 83, 761-769.
[3]
Jones, R. L.; Berry, G. J.; Rubens, R. D.; Miles, D. W. Clinical and pathological absence of cardiotoxicity after liposomal doxorubicin. Lancet Oncol. 2004, 5, 575-577.
[4]
Andreopoulou, E.; Gaiotti, D.; Kim, E.; Downey, A.; Mirchandani, D.; Hamilton, A.; Jacobs, A.; Curtin, J.; Muggia, F. Pegylated liposomal doxorubicin HCL (PLD; Caelyx/Doxil®): Experience with long-term maintenance in responding patients with recurrent epithelial ovarian cancer. Ann. Oncol. 2007, 18, 716-721.
[5]
Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem., Int. Ed. 2010, 49, 6288-6308.
[6]
Chapman, A. P. PEGylated antibodies and antibody fragments for improved therapy: A review. Adv. Drug Deliv. Rev. 2002, 54, 531-545.
[7]
Lubich, C.; Allacher, P.; de la Rosa, M.; Bauer, A.; Prenninger, T.; Horling, F. M.; Siekmann, J.; Oldenburg, J.; Scheiflinger, F.; Reipert, B. M. The mystery of antibodies against polyethylene glycol (PEG)-what do we know? Pharm. Res. 2016, 33, 2239-2249.
[8]
Lee, G. Y.; Kim, J. H.; Choi, K. Y.; Yoon, H. Y.; Kim, K.; Kwon, I. C.; Choi, K.; Lee, B. H.; Park, J. H.; Kim, I. S. Hyaluronic acid nanoparticles for active targeting atherosclerosis. Biomaterials 2015, 53, 341-348.
[9]
Boonstra, M. C.; de Geus, S. W. L.; Prevoo, H. A. J. M.; Hawinkels, L. J. A. C.; van de Velde, C. J. H.; Kuppen, P. J. K.; Vahrmeijer, A. L.; Sier, C. F. M. Selecting targets for tumor imaging: An overview of cancer-associated membrane proteins. Biomarkers Cancer 2016, 8, 119-133.
[10]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 2016, 116, 5338-5431.
[11]
Mout, R.; Moyano, D. F.; Rana, S.; Rotello, V. M. Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev. 2012, 41, 2539-2544.
[12]
Bertrand, N.; Wu, J.; Xu, X. Y.; Kamaly, N.; Farokhzad, O. C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014, 66, 2-25.
[13]
Kang, J.; Joo, J.; Kwon, E. J.; Skalak, M.; Hussain, S.; She, Z. G.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Self-sealing porous silicon-calcium silicate core-shell nanoparticles for targeted siRNA delivery to the injured brain. Adv. Mater. 2016, 28, 7962-7969.
[14]
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J. M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410.
[15]
Tan, S. W.; Wu, T. T.; Zhang, D.; Zhang, Z. P. Cell or cell membrane-based drug delivery systems. Theranostics 2015, 5, 863-881.
[16]
Thanuja, M. Y.; Anupama, C.; Ranganath, S. H. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv. Drug Deliv. Rev. 2018, 132, 57-80.
[17]
Chen, Z. W.; Hu, Q. Y.; Gu, Z. Leveraging engineering of cells for drug delivery. Acc. Chem. Res. 2018, 51, 668-677.
[18]
Wu, M. Y.; Zhang, H. X.; Tie, C. J.; Yan, C. H.; Deng, Z. T.; Wan, Q.; Liu, X.; Yan, F.; Zheng, H. R. MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma. Nat. Commun. 2018, 9, 4777.
[19]
DeLoach, J. R.; Barton, C.; Culler, K. Preparation of resealed carrier erythrocytes and in vivo survival in dogs. Am. J. Vet. Res. 1981, 42, 667-669.
[20]
Nourshargh, S.; Alon, R. Leukocyte migration into inflamed tissues. Immunity 2014, 41, 694-707.
[21]
Villa, C. H.; Anselmo, A. C.; Mitragotri, S.; Muzykantov, V. Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv. Drug Deliv. Rev. 2016, 106, 88-103.
[22]
Hu, C. M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. F. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980-10985.
[23]
Parodi, A.; Quattrocchi, N.; van de Ven, A. L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J. O.; Brown, B. S.; Khaled, S. Z.; Yazdi, I. K.; Enzo, M. V. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 2013, 8, 61-68.
[24]
Tang, J. N.; Shen, D. L.; Caranasos, T. G.; Wang, Z. G.; Vandergriff, A. C.; Allen, T. A.; Hensley, M. T.; Dinh, P. U.; Cores, J.; Li, T. S. et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat. Commun. 2017, 8, 13724.
[25]
Kang, T.; Zhu, Q. Q.; Wei, D.; Feng, J. X.; Yao, J. H.; Jiang, T. Z.; Song, Q. X.; Wei, X. B.; Chen, H. Z.; Gao, X. L. et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 2017, 11, 1397-1411.
[26]
Bose, R. J. C.; Kim, B. J.; Arai, Y.; Han, I. B.; Moon, J. J.; Paulmurugan, R.; Park, H.; Lee, S. H. Bioengineered stem cell membrane functionalized nanocarriers for therapeutic targeting of severe hindlimb ischemia. Biomaterials 2018, 185, 360-370.
[27]
Zhai, Y. H.; Su, J. H.; Ran, W.; Zhang, P. C.; Yin, Q.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics 2017, 7, 2575-2592.
[28]
Xuan, M. J.; Shao, J. X.; Li, J. B. Cell membrane-covered nanoparticles as biomaterials. Natl. Sci. Rev. 2019, 6, 551-561.
[29]
Fang, R. H.; Kroll, A. V.; Gao, W. W.; Zhang, L. F. Cell membrane coating nanotechnology. Adv. Mater. 2018, 30, 1706759.
[30]
He, Z. H.; Zhang, Y. T.; Feng, N. P. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: A review. Mater. Sci. Eng.: C 2020, 106, 110298.
[31]
Liu, Y.; Luo, J. S.; Chen, X. J.; Liu, W.; Chen, T. K. Cell membrane coating technology: A promising strategy for biomedical applications. Nano-Micro Lett. 2019, 11, 100.
[32]
Bailar III, J. C.; Gornik, H. L. Cancer undefeated. N. Engl. J. Med. 1997, 336, 1569-1574.
[33]
Feng, L. Z.; Dong, Z. L.; Liang, C.; Chen, M. C.; Tao, D. L.; Cheng, L.; Yang, K.; Liu, Z. Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials 2018, 181, 81-91.
[34]
Vasan, N.; Baselga, J.; Hyman, D. M. A view on drug resistance in cancer. Nature 2019, 575, 299-309.
[35]
Chen, Q.; Wang, C.; Zhang, X. D.; Chen, G. J.; Hu, Q. Y.; Li, H. J.; Wang, J. Q.; Wen, D.; Zhang, Y. Q.; Lu, Y. F. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89-97.
[36]
Chabner, B. A.; Roberts, T. G. Jr. Chemotherapy and the war on cancer. Nat. Rev. Cancer 2005, 5, 65-72.
[37]
Hu, Q. Y.; Qian, C. G.; Sun, W. J.; Wang, J. Q.; Chen, Z. W.; Bomba, H. N.; Xin, H. L.; Shen, Q. D.; Gu, Z. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv. Mater. 2016, 28, 9573-9580.
[38]
Zhang, Y.; Cai, K. M.; Li, C.; Guo, Q.; Chen, Q. J.; He, X.; Liu, L. S.; Zhang, Y. J.; Lu, Y. F.; Chen, X. L. et al. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett. 2018, 18, 1908-1915.
[39]
Zhang, W.; Yu, M. R.; Xi, Z. Y.; Nie, D.; Dai, Z.; Wang, J.; Qian, K.; Weng, H. X.; Gan, Y.; Xu, L. Cancer cell membrane-camouflaged nanorods with endoplasmic reticulum targeting for improved antitumor therapy. ACS Appl. Mater. Interfaces 2019, 11, 46614-46625.
[40]
Stuckey, D. W.; Shah, K. Stem cell-based therapies for cancer treatment: Separating hope from hype. Nat. Rev. Cancer 2014, 14, 683-691.
[41]
Blau, H. M.; Daley, G. Q. Stem cells in the treatment of disease. N. Engl. J. Med. 2019, 380, 1748-1760.
[42]
Gao, C. Y.; Lin, Z. H.; Jurado-Sánchez, B.; Lin, X. K.; Wu, Z. G.; He, Q. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small 2016, 12, 4056-4062.
[43]
Mu, X. P.; Li, J.; Yan, S. H.; Zhang, H. M.; Zhang, W. J.; Zhang, F. Q.; Jiang, J. L. siRNA delivery with stem cell membrane-coated magnetic nanoparticles for imaging-guided photothermal therapy and gene therapy. ACS Biomater. Sci. Eng. 2018, 4, 3895-3905.
[44]
Wu, H. H.; Zhou, Y.; Tabata, Y.; Gao, J. Q. Mesenchymal stem cell-based drug delivery strategy: From cells to biomimetic. J. Control. Release 2019, 294, 102-113.
[45]
Wang, H. J.; Liu, Y.; He, R. Q.; Xu, D. L.; Zang, J.; Weeranoppanant, N.; Dong, H. Q.; Li, Y. Y. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomater. Sci. 2020, 8, 552-568.
[46]
Yang, N.; Ding, Y. P.; Zhang, Y. L.; Wang, B.; Zhao, X.; Cheng, K. M.; Huang, Y. X.; Taleb, M.; Zhao, J.; Dong, W. F. et al. Surface functionalization of polymeric nanoparticles with umbilical cord-derived mesenchymal stem cell membrane for tumor-targeted therapy. ACS Appl. Mater. Interfaces 2018, 10, 22963-22973.
[47]
Fang, R. H.; Hu, C. M. J.; Luk, B. T.; Gao, W. W.; Copp, J. A.; Tai, Y. Y.; O’Connor, D. E.; Zhang, L. F. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014, 14, 2181-2188.
[48]
Nie, D.; Dai, Z.; Li, J. L.; Yang, Y. W.; Xi, Z. Y.; Wang, J.; Zhang, W.; Qian, K.; Guo, S. Y.; Zhu, C. L. et al. Cancer-cell-membrane-coated nanoparticles with a yolk-shell structure augment cancer chemotherapy. Nano Lett. 2020, 20, 936-946.
[49]
Sun, H. P.; Su, J. H.; Meng, Q. S.; Yin, Q.; Chen, L. L.; Gu, W. W.; Zhang, P. C.; Zhang, Z. W.; Yu, H. J.; Wang, S. L. et al. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater. 2016, 28, 9581-9588.
[50]
Feng, L. Z.; Tao, D. L.; Dong, Z. L.; Chen, Q.; Chao, Y.; Liu, Z.; Chen, M. W. Near-infrared light activation of quenched liposomal Ce6 for synergistic cancer phototherapy with effective skin protection. Biomaterials 2017, 127, 13-24.
[51]
Li, J. C.; Rao, J. H.; Pu, K. Y. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 2018, 155, 217-235.
[52]
Ding, S. S.; He, L.; Bian, X. W.; Tian, G. Metal-organic frameworks-based nanozymes for combined cancer therapy. Nano Today 2020, 35, 100920.
[53]
Cui, X. Z.; Zhou, Z. G.; Yang, Y.; Wei, J.; Wang, J.; Wang, M. W.; Yang, H.; Zhang, Y. J.; Yang, S. P. PEGylated WS2 nanosheets for X-ray computed tomography imaging and photothermal therapy. Chin. Chem. Lett. 2015, 26, 749-754.
[54]
Lan, G. X.; Ni, K. Y.; Lin, W. B. Nanoscale metal-organic frameworks for phototherapy of cancer. Coord. Chem. Rev. 2019, 379, 65-81.
[55]
Liu, Y. J.; Yang, Z.; Huang, X. L.; Yu, G. C.; Wang, S.; Zhou, Z. J.; Shen, Z. Y.; Fan, W. P.; Liu, Y.; Davisson, M. et al. Glutathione-responsive self-assembled magnetic gold nanowreath for enhanced tumor imaging and imaging-guided photothermal therapy. ACS Nano 2018, 12, 8129-8137.
[56]
Gilson, R. C.; Black, K. C. L.; Lane, D. D.; Achilefu, S. Hybrid TiO2-ruthenium Nano-photosensitizer synergistically produces reactive oxygen species in both hypoxic and normoxic conditions. Angew. Chem., Int. Ed. 2017, 56, 10717-10720.
[57]
Zhen, X.; Cheng, P. H.; Pu, K. Y. Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy. Small 2019, 15, 1804105.
[58]
Zhang, D.; Ye, Z. J.; Wei, L.; Luo, H. B.; Xiao, L. H. Cell membrane-coated porphyrin metal-organic frameworks for cancer cell targeting and O2-evolving photodynamic therapy. ACS Appl. Mater. Interfaces 2019, 11, 39594-39602.
[59]
Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053-2108.
[60]
Bu, L. L.; Rao, L.; Yu, G. T.; Chen, L.; Deng, W. W.; Liu, J. F.; Wu, H.; Meng, Q. F.; Guo, S. S.; Zhao, X. Z. et al. Cancer stem cell-platelet hybrid membrane-coated magnetic nanoparticles for enhanced photothermal therapy of head and neck squamous cell carcinoma. Adv. Funct. Mater. 2019, 29, 1807733.
[61]
Su, J. H.; Sun, H. P.; Meng, Q. S.; Yin, Q.; Zhang, P. C.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Bioinspired nanoparticles with NIR-controlled drug release for synergetic chemophotothermal therapy of metastatic breast cancer. Adv. Funct. Mater. 2016, 26, 7495-7506.
[62]
Chen, Q.; Chen, J. W.; Liang, C.; Feng, L. Z.; Dong, Z. L.; Song, X. J.; Song, G. S.; Liu, Z. Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy. J. Control. Release 2017, 263, 79-89.
[63]
Zhai, Y. H.; Ran, W.; Su, J. H.; Lang, T. Q.; Meng, J.; Wang, G. R.; Zhang, P. C.; Li, Y. P. Traceable bioinspired nanoparticle for the treatment of metastatic breast cancer via NIR-trigged intracellular delivery of methylene blue and cisplatin. Adv. Mater. 2018, 30, 1802378.
[64]
Xuan, M. J.; Shao, J. X.; Gao, C. Y.; Wang, W.; Dai, L. R.; He, Q. Self-propelled nanomotors for thermomechanically percolating cell membranes. Angew. Chem., Int. Ed. 2018, 57, 12463-12467.
[65]
Han, Y. T.; Pan, H.; Li, W. J.; Chen, Z.; Ma, A. Q.; Yin, T.; Liang, R. J.; Chen, F. M.; Ma, Y. F.; Jin, Y. et al. T cell membrane mimicking nanoparticles with bioorthogonal targeting and immune recognition for enhanced photothermal therapy. Adv. Sci. 2019, 6, 1900251.
[66]
Wan, S. S.; Cheng, Q.; Zeng, X.; Zhang, X. Z. A Mn(III)-sealed metal-organic framework nanosystem for redox-unlocked tumor theranostics. ACS Nano 2019, 13, 6561-6571.
[67]
Sun, H. P.; Su, J. H.; Meng, Q. S.; Yin, Q.; Chen, L. L.; Gu, W. W.; Zhang, Z. W.; Yu, H. J.; Zhang, P. C.; Wang, S. L. et al. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Adv. Funct. Mater. 2017, 27, 1604300.
[68]
Sang, W.; Zhang, Z.; Dai, Y. L.; Chen, X. Y. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem. Soc. Rev. 2019, 48, 3771-3810.
[69]
Ott, P. A.; Hu, Z. T.; Keskin, D. B.; Shukla, S. A.; Sun, J.; Bozym, D. J.; Zhang, W. D.; Luoma, A.; Giobbie-Hurder, A.; Peter, L. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017, 547, 217-221.
[70]
June, C. H.; O’Connor, R. S.; Kawalekar, O. U.; Ghassemi, S.; Milone, M. C. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361-1365.
[71]
Banchereau, J.; Palucka, K. Immunotherapy: Cancer vaccines on the move. Nat. Rev. Clin. Oncol. 2018, 15, 9-10.
[72]
Palucka, K.; Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 2012, 12, 265-277.
[73]
Yang, Y. P. Cancer immunotherapy: Harnessing the immune system to battle cancer. J. Clin. Invest. 2015, 125, 3335-3337.
[74]
Ye, X. Y.; Liang, X.; Chen, Q.; Miao, Q. W.; Chen, X. L.; Zhang, X. D.; Mei, L. Surgical tumor-derived personalized photothermal vaccine formulation for cancer immunotherapy. ACS Nano 2019, 13, 2956-2968.
[75]
Han, X.; Shen, S. F.; Fan, Q.; Chen, G. J.; Archibong, E.; Dotti, G.; Liu, Z.; Gu, Z.; Wang, C. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Sci. Adv. 2019, 5, eaaw6870.
[76]
Ochyl, L. J.; Moon, J. J. Dendritic cell membrane vesicles for activation and maintenance of antigen-specific T cells. Adv. Healthc. Mater. 2019, 8, 1801091.
[77]
Liu, W. L.; Zou, M. Z.; Liu, T.; Zeng, J. Y.; Li, X.; Yu, W. Y.; Li, C. X.; Ye, J. J.; Song, W.; Feng, J. et al. Expandable immunotherapeutic nanoplatforms engineered from cytomembranes of hybrid cells derived from cancer and dendritic cells. Adv. Mater. 2019, 31, 1900499.
[78]
Li, S. Y.; Wang, Q.; Shen, Y. Q.; Hassan, M.; Shen, J. Z.; Jiang, W.; Su, Y. T.; Chen, J.; Bai, L.; Zhou, W. C. et al. Pseudoneutrophil cytokine sponges disrupt myeloid expansion and tumor trafficking to improve cancer immunotherapy. Nano Lett. 2020, 20, 242-251.
[79]
Cheng, S. S.; Xu, C.; Jin, Y.; Li, Y.; Zhong, C.; Ma, J.; Yang, J. N.; Zhang, N.; Li, Y.; Wang, C. et al. Artificial mini dendritic cells boost T cell-based immunotherapy for ovarian cancer. Adv. Sci. 2020, 7, 1903301.
[80]
Zou, M. Z.; Liu, W. L.; Gao, F.; Bai, X. F.; Chen, H. S.; Zeng, X.; Zhang, X. Z. Artificial natural killer cells for specific tumor inhibition and renegade macrophage re-education. Adv. Mater. 2019, 31, 1904495.
[81]
Deng, G. J.; Sun, Z. H.; Li, S. P.; Peng, X. H.; Li, W. J.; Zhou, L. H.; Ma, Y. F.; Gong, P.; Cai, L. T. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth. ACS Nano 2018, 12, 12096-12108.
[82]
Cheng, Y. H.; Cheng, H.; Jiang, C. X.; Qiu, X. F.; Wang, K. K.; Huan, W.; Yuan, A. H.; Wu, J. H.; Hu, Y. Q. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 2015, 6, 8785.
[83]
Haney, C. R.; Buehler, P. W.; Gulati, A. Purification and chemical modifications of hemoglobin in developing hemoglobin based oxygen carriers. Adv. Drug Deliv. Rev. 2000, 40, 153-169.
[84]
Zhu, W. W.; Dong, Z. L.; Fu, T. T.; Liu, J. J.; Chen, Q.; Li, Y. G.; Zhu, R.; Xu, L. G.; Liu, Z. Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy. Adv. Funct. Mater. 2016, 26, 5490-5498.
[85]
Phua, S. Z. F.; Yang, G. B.; Lim, W. Q.; Verma, A.; Chen, H. Z.; Thanabalu, T.; Zhao, Y. L. Catalase-integrated hyaluronic acid as nanocarriers for enhanced photodynamic therapy in solid tumor. ACS Nano 2019, 13, 4742-4751.
[86]
Li, C.; Yang, X. Q.; An, J.; Cheng, K.; Hou, X. L.; Zhang, X. S.; Hu, Y. G.; Liu, B.; Zhao, Y. D. Red blood cell membrane-enveloped O2 self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy. Theranostics 2020, 10, 867-879.
[87]
Russell, S. J.; Peng, K. W.; Bell, J. C. Oncolytic virotherapy. Nat. Biotechnol. 2012, 30, 658-670.
[88]
Lv, P.; Liu, X.; Chen, X. M.; Liu, C.; Zhang, Y.; Chu, C. C.; Wang, J. Q.; Wang, X. Y.; Chen, X. Y.; Liu, G. Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: A versatile platform for cancer virotherapy. Nano Lett. 2019, 19, 2993-3001.
[89]
Kobayashi, H.; Choyke, P. L. Target-cancer-cell-specific activatable fluorescence imaging probes: Rational design and in vivo applications. Acc. Chem. Res. 2011, 44, 83-90.
[90]
Rao, L.; Meng, Q. F.; Bu, L. L.; Cai, B.; Huang, Q. Q.; Sun, Z. J.; Zhang, W. F.; Li, A.; Guo, S. S.; Liu, W. et al. Erythrocyte membrane-coated upconversion nanoparticles with minimal protein adsorption for enhanced tumor imaging. ACS Appl. Mater. Interfaces 2017, 9, 2159-2168.
[91]
Rao, L.; Bu, L. L.; Cai, B.; Xu, J. H.; Li, A.; Zhang, W. F.; Sun, Z. J.; Guo, S. S.; Liu, W.; Wang, T. H. et al. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater. 2016, 28, 3460-3466.
[92]
Lv, Y. L.; Liu, M.; Zhang, Y.; Wang, X. F.; Zhang, F.; Li, F.; Bao, W. E.; Wang, J.; Zhang, Y. L.; Wei, W. et al. Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging. ACS Nano 2018, 12, 1350-1358.
[93]
Zhang, J. J.; Lin, Y.; Zhou, H.; He, H.; Ma, J. J.; Luo, M. Y.; Zhang, Z. L.; Pang, D. W. Cell membrane-camouflaged NIR II fluorescent Ag2Te quantum dots-based nanobioprobes for enhanced in vivo homotypic tumor imaging. Adv. Healthc. Mater. 2019, 8, 1900341.
[94]
Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G. S.; Qu, C. R.; Diao, S.; Deng, Z. X.; Hu, X. M.; Zhang, B. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 2015, 15, 235-242.
[95]
Zhu, S. J.; Tian, R.; Antaris, A. L.; Chen, X. Y.; Dai, H. J. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 2019, 31, 1900321.
[96]
Zhang, X.; He, S. Q.; Ding, B. B.; Qu, C. R.; Zhang, Q.; Chen, H.; Sun, Y.; Fang, H. Y.; Long, Y.; Zhang, R. P. et al. Cancer cell membrane-coated rare earth doped nanoparticles for tumor surgery navigation in NIR-II imaging window. Chem. Eng. J. 2020, 385, 123959.
[97]
Jalandhara, N.; Arora, R.; Batuman, V. Nephrogenic systemic fibrosis and gadolinium-containing radiological contrast agents: An update. Clin. Pharmacol. Ther. 2011, 89, 920-923.
[98]
Nguyen, T. D. T.; Marasini, R.; Rayamajhi, S.; Aparicio, C.; Biller, D.; Aryal, S. Erythrocyte membrane concealed paramagnetic polymeric nanoparticle for contrast-enhanced magnetic resonance imaging. Nanoscale 2020, 12, 4137-4149.
[99]
Pitchaimani, A.; Nguyen, T. D. T.; Marasini, R.; Eliyapura, A.; Azizi, T.; Jaberi-Douraki, M.; Aryal, S. Biomimetic natural killer membrane camouflaged polymeric nanoparticle for targeted bioimaging. Adv. Funct. Mater. 2019, 29, 1806817.
[100]
Pantel, K.; Alix-Panabières, C. The clinical significance of circulating tumor cells. Nat. Rev. Clin. Oncol. 2007, 4, 62-63.
[101]
Plaks, V.; Koopman, C. D.; Werb, Z. Circulating tumor cells. Science 2013, 341, 1186-1188.
[102]
Wang, L. X.; Asghar, W.; Demirci, U.; Wan, Y. Nanostructured substrates for isolation of circulating tumor cells. Nano Today 2013, 8, 347-387.
[103]
Shen, Z. Y.; Wu, A. G.; Chen, X. Y. Current detection technologies for circulating tumor cells. Chem. Soc. Rev. 2017, 46, 2038-2056.
[104]
Xiong, K.; Wei, W.; Jin, Y. J.; Wang, S. M.; Zhao, D. X.; Wang, S.; Gao, X. Y.; Qiao, C. M.; Yue, H.; Ma, G. H. et al. Biomimetic immuno-magnetosomes for high-performance enrichment of circulating tumor cells. Adv. Mater. 2016, 28, 7929-7935.
[105]
Zhou, X. X.; Luo, B.; Kang, K.; Zhang, Y. J.; Jiang, P. P.; Lan, F.; Yi, Q. Y.; Wu, Y. Leukocyte-repelling biomimetic immunomagnetic nanoplatform for high-performance circulating tumor cells isolation. Small 2019, 15, 1900558.
[106]
Rao, L.; Meng, Q. F.; Huang, Q. Q.; Wang, Z. X.; Yu, G. T.; Li, A.; Ma, W. J.; Zhang, N. G.; Guo, S. S.; Zhao, X. Z. et al. Platelet- leukocyte hybrid membrane-coated immunomagnetic beads for highly efficient and highly specific isolation of circulating tumor cells. Adv. Funct. Mater. 2018, 28, 1803531.
[107]
Ding, C. P.; Zhang, C. L.; Cheng, S. S.; Xian, Y. Z. Multivalent aptamer functionalized Ag2S nanodots/hybrid cell membrane-coated magnetic nanobioprobe for the ultrasensitive isolation and detection of circulating tumor cells. Adv. Funct. Mater. 2020, 30, 1909781.
[108]
Chen, H. M.; Zhang, W. Z.; Zhu, G. Z.; Xie, J.; Chen, X. Y. Rethinking cancer nanotheranostics. Nat. Rev. Mater 2017, 2, 17024.
[109]
Ye, S. F.; Wang, F. F.; Fan, Z. X.; Zhu, Q. X.; Tian, H. N.; Zhang, Y. B.; Jiang, B. L.; Hou, Z. Q.; Li, Y.; Su, G. H. Light/pH-triggered biomimetic red blood cell membranes camouflaged small molecular drug assemblies for imaging-guided combinational chemo-photothermal therapy. ACS Appl. Mater. Interfaces 2019, 11, 15262-15275.
[110]
Rao, L.; Cai, B.; Bu, L. L.; Liao, Q. Q.; Guo, S. S.; Zhao, X. Z.; Dong, W. F.; Liu, W. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 2017, 11, 3496-3505.
[111]
Xiao, F.; Fan, J. L.; Tong, C. Y.; Xiao, C.; Wang, Z.; Liu, B.; Daniyal, M.; Wang, W. An erythrocyte membrane coated mimetic nano-platform for chemo-phototherapy and multimodal imaging. RSC Adv. 2019, 9, 27911-27926.
[112]
Wu, M. L.; Mei, T. X.; Lin, C. Y.; Wang, Y. C.; Chen, J. Y.; Le, W. J.; Sun, M. Y.; Xu, J. G.; Dai, H. Y.; Zhang, Y. F. et al. Melanoma cell membrane biomimetic versatile CuS nanoprobes for homologous targeting photoacoustic imaging and photothermal chemotherapy. ACS Appl. Mater. Interfaces 2020, 12, 16031-16039.
[113]
Li, J.; Wang, X. D.; Zheng, D. Y.; Lin, X. Y.; Wei, Z. W.; Zhang, D.; Li, Z. F.; Zhang, Y.; Wu, M.; Liu, X. L. Cancer cell membrane-coated magnetic nanoparticles for MR/NIR fluorescence dual-modal imaging and photodynamic therapy. Biomater. Sci. 2018, 6, 1834-1845.
[114]
Chen, Z.; Zhao, P. F.; Luo, Z. Y.; Zheng, M. B.; Tian, H.; Gong, P.; Gao, G. H.; Pan, H.; Liu, L. L.; Ma, A. Q. et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 2016, 10, 10049-10057.
[115]
Taubes, G. The bacteria fight back. Science 2008, 321, 356-361.
[116]
Angsantikul, P.; Thamphiwatana, S.; Zhang, Q. Z.; Spiekermann, K.; Zhuang, J.; Fang, R. H.; Gao, W. W.; Obonyo, M.; Zhang, L. F. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection. Adv. Ther. 2018, 1, 1800016.
[117]
Kaplan-Türköz, B.; Jiménez-Soto, L. F.; Dian, C.; Ertl, C.; Remaut, H.; Louche, A.; Tosi, T.; Haas, R.; Terradot, L. Structural insights into Helicobacter pylori oncoprotein CagA interaction with β1 integrin. Proc. Natl. Acad. Sci. USA 2012, 109, 14640-14645.
[118]
Parreira, P.; Shi, Q.; Magalhaes, A.; Reis, C. A.; Bugaytsova, J.; Borén, T.; Leckband, D.; Martins, M. C. L. Atomic force microscopy measurements reveal multiple bonds between Helicobacter pylori blood group antigen binding adhesin and Lewis b ligand. J. Roy. Soc. Interface 2014, 11, 20141040.
[119]
Wang, C.; Wang, Y. L.; Zhang, L. L.; Miron, R. J.; Liang, J. F.; Shi, M. S.; Mo, W. T.; Zheng, S. H.; Zhao, Y. B.; Zhang, Y. F. Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections. Adv. Mater. 2018, 30, 1804023.
[120]
Gilbert, R. J. C. Pore-forming toxins. Cell. Mol. Life Sci. 2002, 59, 832-844.
[121]
Los, F. C. O.; Randis, T. M.; Aroian, R. V.; Ratner, A. J. Role of pore-forming toxins in bacterial infectious diseases. Microbiol. Mol. Biol. Rev. 2013, 77, 173-207.
[122]
Edelson, B. T.; Unanue, E. R. Intracellular antibody neutralizes Listeria growth. Immunity 2001, 14, 503-512.
[123]
Wang, F.; Gao, W. W.; Thamphiwatana, S.; Luk, B. T.; Angsantikul, P.; Zhang, Q. Z.; Hu, C. M. J.; Fang, R. H.; Copp, J. A.; Pornpattananangkul, D. et al. Hydrogel retaining toxin-absorbing nanosponges for local treatment of methicillin-resistant Staphylococcus aureus infection. Adv. Mater. 2015, 27, 3437-3443.
[124]
Hu, C. M. J.; Fang, R. H.; Copp, J.; Luk, B. T.; Zhang, L. F. A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 2013, 8, 336-340.
[125]
Chen, Y. J.; Zhang, Y.; Chen, M. C.; Zhuang, J.; Fang, R. H.; Gao, W. W.; Zhang, L. F. Biomimetic nanosponges suppress in vivo lethality induced by the whole secreted proteins of pathogenic bacteria. Small 2019, 15, 1804994.
[126]
Wu, Z. G.; Li, T. L.; Gao, W.; Xu, T. L.; Jurado-Sánchez, B.; Li, J. X.; Gao, W. W.; He, Q.; Zhang, L. F.; Wang, J. Cell-membrane-coated synthetic nanomotors for effective biodetoxification. Adv. Funct. Mater. 2015, 25, 3881-3887.
[127]
De Ávila, B. E. F.; Angsantikul, P.; Ramírez-Herrera, D. E.; Soto, F.; Teymourian, H.; Dehaini, D.; Chen, Y. J.; Zhang, L. F.; Wang, J. Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Sci. Robot. 2018, 3, eaat0485.
[128]
Atkins, K. E.; Lipsitch, M. Can antibiotic resistance be reduced by vaccinating against respiratory disease? Lancet Respir. Med. 2018, 6, 820-821.
[129]
Andre, F. E.; Booy, R.; Bock, H. L.; Clemens, J.; Datta, S. K.; John, T. J.; Lee, B. W.; Lolekha, S.; Peltola, H.; Ruff, T. A. et al. Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull. World Health Organ. 2008, 86, 140-146.
[130]
Pollard, A. J.; Perrett, K. P.; Beverley, P. C. Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat. Rev. Immunol. 2009, 9, 213-220.
[131]
Cordeiro, A. S.; Alonso, M. J.; de la Fuente, M. Nanoengineering of vaccines using natural polysaccharides. Biotechnol. Adv. 2015, 33, 1279-1293.
[132]
Bundle, D. Antibacterials: A sweet vaccine. Nat. Chem. 2016, 8, 201-202.
[133]
Micoli, F.; Costantino, P.; Adamo, R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol. Rev. 2018, 42, 388-423.
[134]
Gao, W. W.; Fang, R. H.; Thamphiwatana, S.; Luk, B. T.; Li, J. M.; Angsantikul, P.; Zhang, Q. Z.; Hu, C. M. J.; Zhang, L. F. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 2015, 15, 1403-1409.
[135]
Wang, S. H.; Gao, J.; Li, M.; Wang, L. G.; Wang, Z. J. A facile approach for development of a vaccine made of bacterial double-layered membrane vesicles (DMVs). Biomaterials 2018, 187, 28-38.
[136]
Angsantikul, P.; Thamphiwatana, S.; Gao, W. W.; Zhang, L. F. Cell membrane-coated nanoparticles as an emerging antibacterial vaccine platform. Vaccines 2015, 3, 814-828.
[137]
Hu, C. M. J.; Zhang, L. F. Nanotoxoid vaccines. Nano Today 2014, 9, 401-404.
[138]
Wei, X. L.; Beltrán-Gastélum, M.; Karshalev, E.; de Ávila, B. E. F.; Zhou, J. R.; Ran, D. N.; Angsantikul, P.; Fang, R. H.; Wang, J.; Zhang, L. F. Biomimetic micromotor enables active delivery of antigens for oral vaccination. Nano Lett. 2019, 19, 1914-1921.
[139]
Pang, X.; Liu, X.; Cheng, Y.; Zhang, C.; Ren, E.; Liu, C.; Zhang, Y.; Zhu, J.; Chen, X. Y.; Liu, G. Sono-immunotherapeutic nanocapturer to combat multidrug-resistant bacterial infections. Adv. Mater. 2019, 31, 1902530.
[140]
Hajipour, M. J.; Fromm, K. M.; Ashkarran, A. A.; de Aberasturi, D. J.; de Larramendi, I. R.; Rojo, T.; Serpooshan, V.; Parak, W. J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499-511.
[141]
Miller, K. P.; Wang, L.; Benicewicz, B. C.; Decho, A. W. Inorganic nanoparticles engineered to attack bacteria. Chem. Soc. Rev. 2015, 44, 7787-7807.
[142]
Wang, G. M.; Jin, W. H.; Qasim, A. M.; Gao, A.; Peng, X.; Li, W.; Feng, H. Q.; Chu, P. K. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species. Biomaterials 2017, 124, 25-34.
[143]
Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem., Int. Ed. 2013, 52, 1636-1653.
[144]
Huang, X. Q.; Chen, X.; Chen, Q. C.; Yu, Q. Q.; Sun, D. D.; Liu, J. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomater. 2016, 30, 397-407.
[145]
Lin, A. G.; Liu, Y. N.; Zhu, X. F.; Chen, X.; Liu, J. W.; Zhou, Y. H.; Qin, X. Y.; Liu, J. Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and inhibition. ACS Nano 2019, 13, 13965-13984.
[146]
Abbott, N. J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006, 7, 41-53.
[147]
Abbott, N. J.; Patabendige, A. A. K.; Dolman, D. E. M.; Yusof, S. R.; Begley, D. J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 2010, 37, 13-25.
[148]
Serlin, Y.; Shelef, I.; Knyazer, B.; Friedman, A. Anatomy and physiology of the blood-brain barrier. Semin. Cell Dev. Biol. 2015, 38, 2-6.
[149]
Chen, Y.; Liu, L. H. Modern methods for delivery of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev. 2012, 64, 640-665.
[150]
Tsou, Y. H.; Zhang, X. Q.; Zhu, H.; Syed, S.; Xu, X. Y. Drug delivery to the brain across the blood-brain barrier using nanomaterials. Small 2017, 13, 1701921.
[151]
Wu, M. Y.; Chen, W. T.; Chen, Y.; Zhang, H. X.; Liu, C. B.; Deng, Z. T.; Sheng, Z. H.; Chen, J. Q.; Liu, X.; Yan, F. et al. Focused ultrasound-augmented delivery of biodegradable multifunctional nanoplatforms for imaging-guided brain tumor treatment. Adv. Sci. 2018, 5, 1700474.
[152]
Tang, W.; Fan, W. P.; Lau, J.; Deng, L. M.; Shen, Z. Y.; Chen, X. Y. Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 2019, 48, 2967-3014.
[153]
Omuro, A.; DeAngelis, L. M. Glioblastoma and other malignant gliomas: A clinical review. JAMA 2013, 310, 1842-1850.
[154]
Rich, J. N.; Bigner, D. D. Development of novel targeted therapies in the treatment of malignant glioma. Nat. Rev. Drug Discov. 2004, 3, 430-446.
[155]
van Meir, E. G.; Hadjipanayis, C. G.; Norden, A. D.; Shu, H. K.; Wen, P. Y.; Olson, J. J. Exciting new advances in neuro-oncology: The avenue to a cure for malignant glioma. CA Cancer J. Clin. 2010, 60, 166-193.
[156]
Zou, Y.; Liu, Y. J.; Yang, Z. P.; Zhang, D. Y.; Lu, Y. Q.; Zheng, M.; Xue, X.; Geng, J.; Chung, R.; Shi, B. Y. Effective and targeted human orthotopic glioblastoma xenograft therapy via a multifunctional biomimetic nanomedicine. Adv. Mater. 2018, 30, 1803717.
[157]
Chai, Z. L.; Ran, D. N.; Lu, L. W.; Zhan, C. Y.; Ruan, H. T.; Hu, X. F.; Xie, C.; Jiang, K.; Li, J. Y.; Zhou, J. F. et al. Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma. ACS Nano 2019, 13, 5591-5601.
[158]
Fu, S. Y.; Liang, M.; Wang, Y. L.; Cui, L.; Gao, C. H.; Chu, X. Y.; Liu, Q. Q.; Feng, Y.; Gong, W.; Yang, M. Y. et al. Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma. ACS Appl. Mater. Interfaces 2019, 11, 1841-1854.
[159]
Liu, Y. J.; Zou, Y.; Feng, C.; Lee, A.; Yin, J. L.; Chung, R.; Park, J. B.; Rizos, H.; Tao, W.; Zheng, M. et al. Charge conversional biomimetic nanocomplexes as a multifunctional platform for boosting orthotopic glioblastoma RNAi therapy. Nano Lett. 2020, 20, 1637-1646.
[160]
Bose, R. J.; Paulmurugan, R.; Moon, J.; Lee, S. H.; Park, H. Cell membrane-coated nanocarriers: The emerging targeted delivery system for cancer theranostics. Drug Discov. Today 2018, 23, 891-899.
[161]
Jia, Y. L.; Wang, X. B.; Hu, D. H.; Wang, P.; Liu, Q. H.; Zhang, X. J.; Jiang, J. Y.; Liu, X.; Sheng, Z. H.; Liu, B. et al. Phototheranostics: Active targeting of orthotopic glioma using biomimetic proteolipid nanoparticles. ACS Nano 2019, 13, 386-398.
[162]
Tapeinos, C.; Tomatis, F.; Battaglini, M.; Larrañaga, A.; Marino, A.; Telleria, I. A.; Angelakeris, M.; Debellis, D.; Drago, F.; Brero, F. et al. Cell membrane-coated magnetic nanocubes with a homotypic targeting ability increase intracellular temperature due to ROS scavenging and act as a versatile theranostic system for glioblastoma multiforme. Adv. Healthc. Mater. 2019, 8, 1900612.
[163]
Wang, C. X.; Wu, B.; Wu, Y. T.; Song, X. Y.; Zhang, S. S.; Liu, Z. H. Camouflaging nanoparticles with brain metastatic tumor cell membranes: A new strategy to traverse blood-brain barrier for imaging and therapy of brain tumors. Adv. Funct. Mater. 2020, 30, 1909369.
[164]
Hacke, W.; Kaste, M.; Bluhmki, E.; Brozman, M.; Dávalos, A.; Guidetti, D.; Larrue, V.; Lees, K. R.; Medeghri, Z.; Machnig, T. et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 2008, 359, 1317-1329.
[165]
Rothwell, P. M. Is intravenous recombinant plasminogen activator effective up to 4.5 h after onset of ischemic stroke? Nat. Rev. Cardiol. 2009, 6, 164-165.
[166]
Georgiadis, D.; Engelter, S.; Tettenborn, B.; Hungerbühler, H.; Luethy, R.; Müller, F.; Arnold, M.; Giambarba, C.; Baumann, C. R.; von Büdingen, H. C. et al. Early recurrent ischemic stroke in stroke patients undergoing intravenous thrombolysis. Circulation 2006, 114, 237-241.
[167]
Slomski, A. Rapid blood pressure reduction safe for ischemic stroke. JAMA 2019, 321, 1558.
[168]
Zhou, Z. H.; Lu, J. F.; Liu, W. W.; Manaenko, A.; Hou, X. H.; Mei, Q. Y.; Huang, J. L.; Tang, J. P.; Zhang, J. H.; Yao, H. H. et al. Advances in stroke pharmacology. Pharmacol. Ther. 2018, 191, 23-42.
[169]
Nesbitt, W. S.; Westein, E.; Tovar-Lopez, F. J.; Tolouei, E.; Mitchell, A.; Fu, J.; Carberry, J.; Fouras, A.; Jackson, S. P. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 2009, 15, 665-673.
[170]
Xu, J. C.; Zhang, Y. L.; Xu, J. Q.; Liu, G. N.; Di, C. Z.; Zhao, X.; Li, X.; Li, Y.; Pang, N. B.; Yang, C. Z. et al. Engineered nanoplatelets for targeted delivery of plasminogen activators to reverse thrombus in multiple mouse thrombosis models. Adv. Mater. 2020, 32, 1905145.
[171]
Li, M. X.; Li, J.; Chen, J. P.; Liu, Y.; Cheng, X.; Yang, F.; Gu, N. Platelet membrane biomimetic magnetic nanocarriers for targeted delivery and in situ generation of nitric oxide in early ischemic stroke. ACS Nano 2020, 14, 2024-2035.
[172]
Xu, J. P.; Wang, X. Q.; Yin, H. Y.; Cao, X.; Hu, Q. Y.; Lv, W.; Xu, Q. W.; Gu, Z.; Xin, H. L. Sequentially site-specific delivery of thrombolytics and neuroprotectant for enhanced treatment of ischemic stroke. ACS Nano 2019, 13, 8577-8588.
[173]
Dong, X. Y.; Gao, J.; Zhang, C. Y.; Hayworth, C.; Frank, M.; Wang, Z. J. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke. ACS Nano 2019, 13, 1272-1283.
[174]
Lv, W.; Xu, J. P.; Wang, X. Q.; Li, X. R.; Xu, Q. W.; Xin, H. L. Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano 2018, 12, 5417-5426.
[175]
Lusis, A. J. Atherosclerosis. Nature 2000, 407, 233-241.
[176]
Stehbens, W. E. The role of lipid in the pathogenesis of atherosclerosis. Lancet 1975, 305, 724-727.
[177]
Falk, E. Pathogenesis of atherosclerosis. J. Am. Coll. Cardiol. 2006, 47, C7-C12.
[178]
Wei, X. L.; Ying, M.; Dehaini, D.; Su, Y. Y.; Kroll, A. V.; Zhou, J. R.; Gao, W. W.; Fang, R. H.; Chien, S.; Zhang, L. F. Nanoparticle functionalization with platelet membrane enables multifactored biological targeting and detection of atherosclerosis. ACS Nano 2018, 12, 109-116.
[179]
Wang, Y.; Zhang, K.; Qin, X.; Li, T. H.; Qiu, J. H.; Yin, T. Y.; Huang, J. L.; McGinty, S.; Pontrelli, G.; Ren, J. et al. Biomimetic nanotherapies: Red blood cell based core-shell structured nanocomplexes for atherosclerosis management. Adv. Sci. 2019, 6, 1900172.
[180]
Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature 2003, 423, 356-361.
[181]
Scott, D. L.; Wolfe, F.; Huizinga, T. W. J. Rheumatoid arthritis. Lancet 2010, 376, 1094-1108.
[182]
Smolen, S. J.; Aletaha, D.; Barton, A.; Burmester, R. G.; Emery, P.; Firestein, S. G.; Kavanaugh, A.; McInnes, I. B.; Solomon, D. H.; Strand, V. et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 2018, 4, 18001.
[183]
Fontana, F.; Albertini, S.; Correia, A.; Kemell, M.; Lindgren, R.; Mäkilä, E.; Salonen, J.; Hirvonen, J. T.; Ferrari, F.; Santos, H. A. Bioengineered porous silicon Nanoparticles@Macrophages cell membrane as composite platforms for rheumatoid arthritis. Adv. Funct. Mater. 2018, 28, 1801355.
[184]
Jin, K.; Luo, Z. M.; Zhang, B.; Pang, Z. Q. Biomimetic nanoparticles for inflammation targeting. Acta Pharm. Sin. B 2018, 8, 23-33.
[185]
Zhang, Q. Z.; Dehaini, D.; Zhang, Y.; Zhou, J. L.; Chen, X. Y.; Zhang, L. F.; Fang, R. H.; Gao, W. W.; Zhang, L. F. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 2018, 13, 1182-1190.
[186]
Shi, Y. S.; Xie, F. F.; Rao, P. S.; Qian, H. Y.; Chen, R. J.; Chen, H.; Li, D. F.; Mu, D.; Zhang, L. L.; Lv, P. et al. TRAIL-expressing cell membrane nanovesicles as an anti-inflammatory platform for rheumatoid arthritis therapy. J. Control. Release 2020, 320, 304-313.
[187]
Boilard, E.; Nigrovic, P. A.; Larabee, K.; Watts, G. F. M.; Coblyn, J. S.; Weinblatt, M. E.; Massarotti, E. M.; Remold-O'Donnell, E.; Farndale, R. W.; Ware, J. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010, 327, 580-583.
[188]
He, Y. W.; Li, R. X.; Liang, J. M.; Zhu, Y.; Zhang, S. Y.; Zheng, Z. C.; Qin, J.; Pang, Z. Q.; Wang, J. X. Drug targeting through platelet membrane-coated nanoparticles for the treatment of rheumatoid arthritis. Nano Res. 2018, 11, 6086-6101.
[189]
Xie, W.; Du, L. Diabetes is an inflammatory disease: Evidence from traditional Chinese medicines. Diabetes Obes. Metab. 2011, 13, 289-301.
[190]
Wheeler, T. J.; Hinkle, P. C. The glucose transporter of mammalian cells. Annu. Rev. Physiol. 1985, 47, 503-517.
[191]
Zhang, J. Z.; Ismail-Beigi, F. Activation of Glut1 glucose transporter in human erythrocytes. Arch. Biochem. Biophys. 1998, 356, 86-92.
[192]
Kim, I.; Kwon, D.; Lee, D.; Lee, T. H.; Lee, J. H.; Lee, G.; Yoon, D. S. A highly permselective electrochemical glucose sensor using red blood cell membrane. Biosens. Bioelectron. 2018, 102, 617-623.
[193]
Kim, I.; Kim, C.; Lee, D.; Lee, S. W.; Lee, G.; Yoon, D. S. A bio-inspired highly selective enzymatic glucose sensor using a red blood cell membrane. Analyst 2020, 145, 2125-2132.
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 September 2020
Revised: 17 November 2020
Accepted: 24 November 2020
Published: 29 December 2020
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 81801843 and 81971737), Guangdong Basic and Applied Basic Research Foundation (No. 2020B1515020017), Technology & Innovation Commission of Shenzhen Municipality (No. JCYJ20190807152601651), Guangdong Special Support Program (No. 2019TQ05Y224), and the Fundamental Research Funds for the Central Universities (No. 19ykpy138).

Return