Journal Home > Volume 14 , Issue 8

Here, we report a strategy to deliver drug nanoparticles into cells with nucleus-targeting ability under a spatiotemporal control. The nanoparticles were constructed through self-assembly of photoresponsive prodrugs and free drugs. By incorporating a nucleus localization sequence in the system, drug nanoparticles could be delivered into nuclei upon visible light irradiation. The drug nanoparticles showed high drug loading capacity and specific nucleus-targeting ability, which efficiently killed cancer cells. This self-assembly strategy could be applied to other hydrophobic drugs and targeting ligands for photo-controlled organelle-targeted drug delivery.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Photo-triggered nucleus targeting for cancer drug delivery

Show Author's information Yafei Li1,2Wen Lv2Lang Wang3Yaming Zhang1,2Lipeng Yang4Tianyi Wang1,2Linyong Zhu4Yufeng Wang3Weiping Wang1,2( )
Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
Department of Chemistry, The University of Hong Kong, Hong Kong, China
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200030, China

Abstract

Here, we report a strategy to deliver drug nanoparticles into cells with nucleus-targeting ability under a spatiotemporal control. The nanoparticles were constructed through self-assembly of photoresponsive prodrugs and free drugs. By incorporating a nucleus localization sequence in the system, drug nanoparticles could be delivered into nuclei upon visible light irradiation. The drug nanoparticles showed high drug loading capacity and specific nucleus-targeting ability, which efficiently killed cancer cells. This self-assembly strategy could be applied to other hydrophobic drugs and targeting ligands for photo-controlled organelle-targeted drug delivery.

Keywords: phototargeting, dePEGylation, nucleus targeting, coumarin, photoresponsive prodrugs

References(38)

[1]
Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20-37.
[2]
Nichols, J. W.; Bae, Y. H. EPR: Evidence and fallacy. J. Control. Release 2014, 190, 451-464.
[3]
Yan, J.; Zhu, R. Y.; Wu, F.; Zhao, Z. Y.; Ye, H.; Hou, M. Y.; Liu, Y.; Yin, L. C. iRGD-reinforced, photo-transformable nanoclusters toward cooperative enhancement of intratumoral penetration and antitumor efficacy. Nano Res. 2020, 13, 2706-2715.
[4]
Lee, E. S.; Gao, Z. G.; Kim, D.; Park, K.; Kwon, I. C.; Bae, Y. H. Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance. J. Control. Release 2008, 129, 228-236.
[5]
Barhoumi, A.; Wang, W. P.; Zurakowski, D.; Langer, R. S.; Kohane, D. S. Photothermally targeted thermosensitive polymer-masked nanoparticles. Nano Lett. 2014, 14, 3697-3701.
[6]
Yang, Y.; Liu, J. J.; Sun, X. Q.; Feng, L. Z.; Zhu, W. W.; Liu, Z.; Chen, M. W. Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures. Nano Res. 2016, 9, 139-148.
[7]
Wang, Y. F.; Kohane, D. S. External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2017, 2, 17020.
[8]
Wang, S.; Huang, P.; Chen, X. Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater. 2016, 28, 7340-7364.
[9]
Rwei, A. Y.; Wang, W. P.; Kohane, D. S. Photoresponsive nanoparticles for drug delivery. Nano Today 2015, 10, 451-467.
[10]
Li, Y. F.; Zhang, Y. M.; Wang, W. P. Phototriggered targeting of nanocarriers for drug delivery. Nano Res. 2018, 11, 5424-5438.
[11]
Li, J.; Sun, C. Y.; Tao, W.; Cao, Z. Y.; Qian, H. S. ; Yang, X. Z.; Wang, J. Photoinduced PEG deshielding from ROS-sensitive linkage-bridged block copolymer-based nanocarriers for on-demand drug delivery. Biomaterials 2018, 170, 147-155.
[12]
Rajendran, L.; Knölker, H. J.; Simons, K. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discov. 2010, 9, 29-42.
[13]
Kim, K. Y.; Jin, H. Y.; Park, J.; Jung, S. H.; Lee, J. H.; Park, H.; Kim, S. K.; Bae, J.; Jung, J. H. Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery. Nano Res. 2017, 11, 1082-1098.
[14]
Zhang, W. J.; Hu, X. L.; Shen, Q.; Xing, D. Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy. Nat. Commun. 2019, 10, 1704.
[15]
Lv, W.; Zhang, Z.; Zhang, K. Y.; Yang, H. R.; Liu, S. J.; Xu, A. Q.; Guo, S.; Zhao, Q.; Huang, W. A mitochondria-targeted photosensitizer showing improved photodynamic therapy effects under hypoxia. Angew. Chem., Int. Ed. 2016, 55, 9947-9951.
[16]
Hua, X. W.; Bao, Y. W.; Wu, F. G. Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl. Mater. Interfaces 2018, 10, 10664-10677.
[17]
Cheng, H.; Yuan, P.; Fan, G. L.; Zhao, L. P.; Zheng, R. R.; Yang, B.; Qiu, X. Z.; Yu, X. Y.; Li, S. Y.; Zhang, X. Z. Chimeric peptide nanorods for plasma membrane and nuclear targeted photosensitizer delivery and enhanced photodynamic therapy. Appl. Mater. Today 2019, 16, 120-131.
[18]
Zhou, Z. X.; Shen, Y. Q.; Tang, J. B.; Fan, M. H.; Van Kirk, E. A.; Murdoch, W. J.; Radosz, M. Charge-reversal drug conjugate for targeted cancer cell nuclear drug delivery. Adv. Funct. Mater. 2009, 19, 3580-3589.
[19]
Wang, Y.; Niu, G. L.; Zhai, S. D.; Zhang, W. J.; Xing, D. Specific photoacoustic cavitation through nucleus targeted nanoparticles for high-efficiency tumor therapy. Nano Res. 2020, 13, 719-728.
[20]
Leung, C. W. T.; Wang, Z. M.; Zhao, E. G.; Hong, Y. N.; Chen, S. J.; Kwok, R. T. K.; Leung, A. C. S.; Wen, R. S.; Li, B. S.; Lam, J. W. Y. et al. A lysosome-targeting aiegen for autophagy visualization. Adv. Healthc Mater. 2016, 5, 427-431.
[21]
Daum, S.; Reshetnikov, M. S. V.; Sisa, M.; Dumych, T.; Lootsik, M. D.; Bilyy, R.; Bila, E.; Janko, C.; Alexiou, C.; Herrmann, M. et al. Lysosome-targeting amplifiers of reactive oxygen species as anticancer prodrugs. Angew. Chem., Int. Ed. 2017, 56, 15545-15549.
[22]
Panasci, L.; Paiement, J. P.; Christodoulopoulos, G.; Belenkov, A.; Malapetsa, A.; Aloyz, R. Chlorambucil drug resistance in chronic lymphocytic leukemia: The emerging role of DNA repair. Clin. Cancer Res. 2001, 7, 454-461.
[23]
Sui, M. H.; Liu, W. W.; Shen, Y. Q. Nuclear drug delivery for cancer chemotherapy. J. Control Release 2011, 155, 227-236.
[24]
Lin, Q.; Bao, C.; Cheng, S.; Yang, Y.; Ji, W.; Zhu, L. Target-activated coumarin phototriggers specifically switch on fluorescence and photocleavage upon bonding to thiol-bearing protein. J. Am. Chem. Soc. 2012, 134, 5052-5055.
[25]
Lu, Z. K.; Weber, R.; Twieg, R. J. Improved synthesis of DCDHF fluorophores with maleimide functional groups. Tetrahedron Lett. 2006, 47, 7213-7217.
[26]
Babin, J.; Pelletier, M.; Lepage, M.; Allard, J. F.; Morris, D.; Zhao, Y. A new two-photon-sensitive block copolymer nanocarrier. Angew. Chem., Int. Ed. 2009, 48, 3329-3332.
[27]
Zhao, L. Z.; Peng, J. J.; Huang, Q.; Li, C. Y.; Chen, M.; Sun, Y.; Lin, Q. N.; Zhu, L. Y.; Li, F. Y. Near-infrared photoregulated drug release in living tumor tissue via yolk-shell upconversion nanocages. Adv. Funct. Mater. 2014, 24, 363-371.
[28]
Lin, Q. N.; Bao, C. Y.; Yang, Y. L.; Liang, Q. N.; Zhang, D. S.; Cheng, S. Y.; Zhu, L. Y. Highly discriminating photorelease of anticancer drugs based on hypoxia activatable phototrigger conjugated chitosan nanoparticles. Adv. Mater. 2013, 25, 1981-1986.
[29]
Liu, Q.; Wang, W. P.; Zhan, C. Y.; Yang, T. S.; Kohane, D. S. Enhanced precision of nanoparticle phototargeting in vivo at a safe irradiance. Nano Lett. 2016, 16, 4516-4520.
[30]
Wang, Y. F.; Liu, C. H.; Ji, T. J.; Mehta, M.; Wang, W. P.; Marino, E.; Chen, J.; Kohane, D. S. Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles. Nat. Commun. 2019, 10, 804.
[31]
Wang, W. P.; Liu, Q.; Zhan, C. Y.; Barhoumi, A.; Yang, T. S.; Wylie, R. G.; Armstrong, P. A.; Kohane, D. S. Efficient triplet-triplet annihilation-based upconversion for nanoparticle phototargeting. Nano Lett. 2015, 15, 6332-6338.
[32]
Lv, W.; Li, Y. F.; Li, F. Y.; Lan, X.; Zhang, Y. M.; Du, L. L.; Zhao, Q.; Phillips, D. L.; Wang, W. P. Upconversion-like photolysis of BODIPY-based prodrugs via a one-photon process. J. Am. Chem. Soc. 2019, 141, 17482-17486.
[33]
Bosanquet, A. G.; Clarke, H. E. Chlorambucil: Stability of solutions during preparation and storage. Cancer Chemother. Pharmacol 1986, 18, 176-179.
[34]
Ou, K. Y.; Xu, X. J.; Guan, S. Y.; Zhang, R. H.; Zhang, X. Y.; Kang, Y.; Wu, J. Nanodrug carrier based on poly(ursolic acid) with self-anticancer activity against colorectal cancer. Adv. Funct. Mater. 2019, 30, 1907857.
[35]
Cao, Z. Y.; Ma, Y. C.; Sun, C. Y.; Lu, Z. D.; Yao, Z. Y.; Wang, J. X.; Li, D. D.; Yuan, Y. Y.; Yang, X. Z. Ros-sensitive polymeric nanocarriers with red light-activated size shrinkage for remotely controlled drug release. Chem. Mater. 2018, 30, 517-525.
[36]
Sun, R.; Shen, S.; Zhang, Y. J.; Xu, C. F.; Cao, Z. T.; Wen, L. P.; Wang, J. Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials 2016, 103, 44-55.
[37]
Lv, W.; Long, K. Q.; Yang, Y.; Chen, S. J.; Zhan, C. Y.; Wang, W. P. A red light-triggered drug release system based on one-photon upconversion-like photolysis. Adv. Healthc. Mater. 2020, 9, 2001118.
[38]
Sarfati, G.; Dvir, T.; Elkabets, M.; Apte, R. N.; Cohen, S. Targeting of polymeric nanoparticles to lung metastases by surface-attachment of YIGSR peptide from laminin. Biomaterials 2011, 32, 152-161.
File
12274_2020_3264_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 September 2020
Revised: 20 November 2020
Accepted: 24 November 2020
Published: 03 January 2021
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the Research Grants Council of Hong Kong (Early Career Scheme, No. 27115220), Ming Wai Lau Centre for Reparative Medicine Associate Member Program, and Young Scientists Fund of the National Natural Science Foundation of China (No. 81803469). We thank Dr. Jenny Lam at The University of Hong Kong for providing the A549 cell line. We acknowledge the assistance of The University of Hong Kong Li Ka Shing Faculty of Medicine Faculty Core Facility.

Return