Journal Home > Volume 14 , Issue 8

Porous carbon materials play essential roles in electrocatalysis and electrochemical energy storage. It is of significant importance to rationally design and tune their porous structure and active sites for achieving high electrochemical activity and stability. Herein, we develop a novel approach to tune the morphology of porous carbon materials (PCM) by embedding fullerene C60, achieving improved performance of oxygen reduction reaction (ORR) and lithium-sulfur (Li-S) battery. Owing to the strong interaction between C60 and imidazole moieties, pomegranate-like hybrid of C60-embedded zeolitic imidazolate framework (ZIF-67) precursor is synthesized, which is further pyrolyzed to form C60-embedded cobalt/nitrogen-codoped porous carbon materials (abbreviated as C60@Co-N-PCM). Remarkably, the unique structure of C60@Co-N-PCM offers excellent ORR electrocatalytic activity and stability in alkaline solutions, outperforming the commercial Pt/C (20 wt.%) catalyst. Besides, C60@Co-N-PCM as a novel cathode delivers a high specific capacity of ~ 900 mAh·g-1 at 0.2 C rate in Li-S batteries, which is superior to the pristine ZIF-67-derived PCM without embedding C60.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Pomegranate-like C60@cobalt/nitrogen-codoped porous carbon for high-performance oxygen reduction reaction and lithium-sulfur battery

Show Author's information Jianhua WuShiyang WangZhanwu LeiRunnan GuanMuqing ChenPingwu DuYalin LuRuiguo Cao( )Shangfeng Yang( )
Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China

Abstract

Porous carbon materials play essential roles in electrocatalysis and electrochemical energy storage. It is of significant importance to rationally design and tune their porous structure and active sites for achieving high electrochemical activity and stability. Herein, we develop a novel approach to tune the morphology of porous carbon materials (PCM) by embedding fullerene C60, achieving improved performance of oxygen reduction reaction (ORR) and lithium-sulfur (Li-S) battery. Owing to the strong interaction between C60 and imidazole moieties, pomegranate-like hybrid of C60-embedded zeolitic imidazolate framework (ZIF-67) precursor is synthesized, which is further pyrolyzed to form C60-embedded cobalt/nitrogen-codoped porous carbon materials (abbreviated as C60@Co-N-PCM). Remarkably, the unique structure of C60@Co-N-PCM offers excellent ORR electrocatalytic activity and stability in alkaline solutions, outperforming the commercial Pt/C (20 wt.%) catalyst. Besides, C60@Co-N-PCM as a novel cathode delivers a high specific capacity of ~ 900 mAh·g-1 at 0.2 C rate in Li-S batteries, which is superior to the pristine ZIF-67-derived PCM without embedding C60.

Keywords: oxygen reduction reaction (ORR), fullerene, porous carbon materials, zeolitic imidazolate framework (ZIF), lithium-sulfur (Li-S) battery

References(62)

[1]
Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010-5016.
[2]
Li, W. Q.; Fu, H. Q.; Cao, Y. H.; Wang, H. J.; Yu, H.; Qiao, Z. W.; Liang, H.; Peng, F. Mn3O4@C nanoparticles supported on porous carbon as bifunctional oxygen electrodes and their electrocatalytic mechanism. ChemElectroChem 2019, 6, 359-368.
[3]
Qiao, M. F.; Wang, Y.; Wang, Q.; Hu, G. Z.; Mamat, X.; Zhang, S. S.; Wang, S. Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for Ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2020, 59, 2688-2694.
[4]
Lu, J.; Zhou, W. J.; Wang, J. K.; Ke, Y. T.; Yang, L. J.; Zhou, K.; Liu, X. J.; Tang, Z. H.; Li, L. G.; Chen, S. W. Core-shell nanocomposites based on gold nanoparticle@zinc-iron-embedded porous carbons derived from metal-organic frameworks as efficient dual catalysts for oxygen reduction and hydrogen evolution reactions. ACS Catal. 2016, 6, 1045-1053.
[5]
Huang, X. X.; Shen, T.; Zhang, T.; Qiu, H. L.; Gu, X. X.; Ali, Z.; Hou, Y. L. Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species. Adv. Energy Mater. 2020, 10, 1900375.
[6]
Xia, W.; Qu, C.; Liang, Z. B.; Zhao, B. T.; Dai, S. G.; Qiu, B.; Jiao, Y.; Zhang, Q. B.; Huang, X. Y.; Guo, W. H. et al. High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite. Nano Lett. 2017, 17, 2788-2795.
[7]
Xu, X. L.; Shi, W. H.; Li, P.; Ye, S. F.; Ye, C. Z.; Ye, H. J.; Lu, T. M.; Zheng, A. A.; Zhu, J. X.; Xu, L. X. et al. Facile fabrication of three-dimensional graphene and metal-organic framework composites and their derivatives for flexible all-solid-state supercapacitors. Chem. Mater. 2017, 29, 6058-6065.
[8]
Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982-3986.
[9]
Liu, Y.; Fang, Y. J.; Zhao, Z. W.; Yuan, C. Z.; Lou, X. W. A ternary Fe1-xS@porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries. Adv. Energy Mater. 2019, 9, 1803052.
[10]
He, J. R.; Chen, Y. F.; Manthiram, A. MOF-derived cobalt sulfide grown on 3D graphene foam as an efficient sulfur host for long-life lithium-sulfur batteries. iScience 2018, 4, 36-43.
[11]
He, Y. F.; Zhuang, X. D.; Lei, C. J.; Lei, L. C.; Hou, Y.; Mai, Y. Y.; Feng, X. L. Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications. Nano Today 2019, 24, 103-119.
[12]
Fu, A.; Wang, C. Z.; Pei, F.; Cui, J. Q.; Fang, X. L.; Zheng, N. F. Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small 2019, 15, 1804786.
[13]
Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M. W. et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.
[14]
Hua, X. D.; Sun, X. H.; Yoo, S. J.; Evanko, B.; Fan, F. R.; Cai, S.; Zheng, C. M.; Hu, W. B.; Stucky, G. D. Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. Nano Energy 2019, 56, 828-839.
[15]
Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.
[16]
Yang, J.; Sun, H. Y.; Liang, H. Y.; Ji, H. X.; Song, L.; Gao, C.; Xu, H. X. A highly efficient metal-free oxygen reduction electrocatalyst assembled from carbon nanotubes and Graphene. Adv. Mater. 2016, 28, 4606-4613.
[17]
Zheng, L.; Yu, S. Y.; Lu, X. Y.; Fan, W. J.; Chi, B.; Ye, Y. K.; Shi, X. D.; Zeng, J. H.; Li, X. H.; Liao, S. J. Two-dimensional bimetallic Zn/Fe-metal-organic framework (MOF)-derived porous carbon nanosheets with a high density of single/paired Fe atoms as high-performance oxygen reduction catalysts. ACS Appl. Mater. Interfaces 2020, 12, 13878-13887.
[18]
Xu, X. T.; Yang, T.; Zhang, Q. W.; Xia, W.; Ding, Z. B.; Eid, K.; Abdullah, A. M.; Hossain, S. A.; Zhang, S. H.; Tang, J. et al. Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes. Chem. Eng. J. 2020, 390, 124493.
[19]
Li, Z. X.; Yang, B. L.; Zou, K. Y.; Kong, L. J.; Yue, M. L.; Duan, H. H. Novel porous carbon nanosheet derived from a 2D Cu-MOF: Ultrahigh porosity and excellent performances in the supercapacitor cell. Carbon 2019, 144, 540-548.
[20]
Fu, S. F.; Zhu, C. Z.; Song, J. H.; Du, D.; Lin, Y. H. Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv. Energy Mater. 2017, 7, 1700363.
[21]
Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal conversion of core-shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 2015, 137, 1572-1580.
[22]
Wu, H. B.; Lou, X. W. (David). Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Sci. Adv. 2017, 3, 9252-9267.
[23]
Chen, H. R.; Shen, K.; Mao, Q.; Chen, J. Y.; Li, Y. W. Nanoreactor of MOF-derived yolk-shell Co@C-N: Precisely controllable structure and enhanced catalytic activity. ACS Catal. 2018, 8, 1417-1426.
[24]
Zhu, L.; Zheng, D. Z.; Wang, Z. F.; Zheng, X. S.; Fang, P. P.; Zhu, J. F.; Yu, M. H.; Tong, Y. X.; Lu, X. H. A confinement strategy for stabilizing ZIF-derived bifunctional catalysts as a benchmark cathode of flexible all-solid-state zinc-air batteries. Adv. Mater. 2018, 30, 1805268.
[25]
Song, X. K.; Chen, S.; Guo, L. L.; Sun, Y.; Li, X. P.; Cao, X.; Wang, Z. X.; Sun, J. H.; Lin, C.; Wang, Y. General dimension-controlled synthesis of hollow carbon embedded with metal singe atoms or core-shell nanoparticles for energy storage applications. Adv. Energy Mater. 2018, 8, 1801101.
[26]
Zhou, A. W.; Guo, R. M.; Zhou, J.; Dou, Y. B.; Chen, Y.; Li, J. R. Pd@ZIF-67 derived recyclable Pd-based catalysts with hierarchical pores for high-performance heck reaction. ACS Sustainable Chem. Eng. 2018, 6, 2103-2111.
[27]
Tong, Y. P.; Liang, Y.; Hu, Y. X.; Shamsaei, E.; Wei, J.; Hao, Y. X.; Mei, W. W.; Chen, X.; Shi, Y. R.; Wang, H. T. Synthesis of ZIF/CNT nanonecklaces and their derived cobalt nanoparticles/N-doped carbon catalysts for oxygen reduction reaction. J. Alloys Compd. 2020, 816, 152684.
[28]
Yang, L. Y.; Feng, Y.; Yu, D. B.; Qiu, J. H.; Zhang, X. F.; Dong, D. H.; Yao, J. F. Design of ZIF-based CNTs wrapped porous carbon with hierarchical pores as electrode materials for supercapacitors. J. Phys. Chem. Solids 2019, 125, 57-63.
[29]
Guan, J.; Zhong, X. W.; Chen, X.; Zhu, X. J.; Li, P. L.; Wu, J. H.; Lu, Y. L.; Yu, Y.; Yang, S. F. Expanding pore sizes of ZIF-8-derived nitrogen-doped microporous carbon Via C60 embedding: Toward improved anode performance for the lithium-ion battery. Nanoscale 2018, 10, 2473-2480.
[30]
Guan, J.; Chen, X.; Wei, T.; Liu, F. P.; Wang, S.; Yang, Q.; Lu, Y. L.; Yang, S. F. Directly bonded hybrid of graphene nanoplatelets and fullerene: Facile solid-state mechanochemical synthesis and application as carbon-based electrocatalyst for oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 4139-4146.
[31]
Yang, J.; Zhang, F. J.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y. E.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889-10893.
[32]
Lin, K. Y. A.; Chang, H. A. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 2015, 139, 624-631.
[33]
Guo, X. L.; Xing, T. T.; Lou, Y. B.; Chen, J. X. Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. J. Solid State Chem. 2016, 235, 107-112.
[34]
Bustamante, E. L.; Fernández, J. L.; Zamaro, J. M. Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J. Colloid Interf. Sci. 2014, 424, 37-43.
[35]
Li, X. Y.; Gao, X. Y.; Ai, L. H.; Jiang, J. Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem. Eng. J. 2015, 274, 238-246.
[36]
Liu, Y. J.; Gao, P. F.; Zhang, T. M.; Zhu, X. J.; Zhang, M. M.; Chen, M. Q.; Du, P. W.; Wang, G. W.; Ji, H. X.; Yang, J. L. et al. Azide passivation of black phosphorus nanosheets: Covalent functionalization affords ambient stability enhancement. Angew. Chem., Int. Ed. 2019, 58, 1479-1483.
[37]
Zhu, X. J.; Zhang, T. M.; Jiang, D. C.; Duan, H. L.; Sun, Z. J.; Zhang, M. M.; Jin, H. C.; Guan, R. N.; Liu, Y. J.; Chen, M. Q. et al. Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nat. Commun. 2018, 9, 4177.
[38]
Zhang, L. Y.; Lan, T. M.; Wang, J.; Wei, L. M.; Yang, Z.; Zhang, Y. F. Template-free synthesis of one-dimensional cobalt nanostructures by hydrazine reduction route. Nanoscale Res. Lett. 2011, 6, 58.
[39]
Li, X. Y.; Zeng, C. M.; Jiang, J.; Ai, L. H. Magnetic cobalt nanoparticles embedded in hierarchically porous nitrogen-doped carbon frameworks for highly efficient and well-recyclable catalysis. J. Mater. Chem. A 2016, 4, 7476-7482.
[40]
Jiang, J. Q.; Wei, F. X.; Yu, G. X.; Sui, Y. W. Co3O4 electrode prepared by using metal-organic framework as a host for supercapacitors. J. Nanomater. 2015, 16, 80.
[41]
Qiu, B. C.; Deng, Y. X.; Du, M. M.; Xing, M. Y.; Zhang. J. L. Ultradispersed cobalt ferrite nanoparticles assembled in graphene aerogel for continuous photo-fenton reaction and enhanced lithium storage performance. Sci. Rep. 2016, 6, 29099.
[42]
Kuzmany, H.; Matus, M.; Burger, B.; Winter, J. Raman scattering in C60 fullerenes and fulleride. Adv. Mater. 1994, 6, 731-745.
[43]
Fu, J.; Cano, Z. P.; Yu, M. G.; Park, A.; Yu, A. P.; Fowler, M.; Chen, Z. W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv. Mater. 2017, 29, 1604685.
[44]
Xia, W.; Zou; R. Q.; An, L.; Xia, D. G.; Guo, S. J. A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568.
[45]
Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548-554.
[46]
Shen, S. D.; Garcia-Bennett, A. E.; Liu, Z.; Lu, Q. Y.; Shi, Y. F.; Yan, Y.; Yu, C. Z.; Liu, W. C.; Cai, Y.; Terasaki, O. et al. Three-dimensional low symmetry mesoporous silica structures templated from tetra-headgroup rigid bolaform quaternary ammonium surfactant. J. Am. Chem. Soc. 2005, 127, 6780-6787.
[47]
Han, X. P.; Ling, X. F.; Wang, Y.; Ma, T. Y.; Zhong, C.; Hu, W. B.; Deng, Y. D. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem., Int. Ed. 2019, 131, 5413-5418.
[48]
Lian, Y. B.; Yang, W. J.; Zhang, C. F.; Sun, H.; Deng, Z.; Xu, W. J.; Song, L.; Ouyang, Z. W.; Wang, Z. X.; Guo, J. et al. Unpaired 3d electrons on atomically dispersed cobalt centres in coordination polymers regulate both oxygen reduction reaction (ORR) activity and selectivity for use in zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 286-294.
[49]
Sharif, T.; Gracia-Espino, E.; Chen, A. R.; Hu, G. Z.; Wågberg, T. Oxygen reduction reactions on single-or few-atom discrete active sites for heterogeneous catalysis. Adv. Energy Mater. 2019, 10, 1902084.
[50]
Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71-74.
[51]
Yang, H. B.; Miao, J. W.; Huang, S. F.; Chen, J. Z.; Tao, H. B.; Wang, X. Z.; Zhang, L. P.; Chen, R.; Gao, J. J.; Chen, H. M. et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2016, 2, e1501122.
[52]
Kong, L.; Chen, X.; Li, B. Q.; Peng, H. J.; Huang, J. Q.; Xie, J.; Zhang, Q. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries. Adv. Mater. 2018, 30, 1705219.
[53]
Liu, D. H.; Zhang, C.; Zhou, G. M.; Lv, W.; Ling, G. W.; Zhi, L. J.; Yang. Q. H. Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018, 5, 1700270.
[54]
Zhang, H.; Zhao, W. Q.; Zou, M. C.; Wang, Y. S.; Chen, Y. J.; Xu, L.; Wu, H. S.; Cao, A. Y. 3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800013.
[55]
Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977-3985.
[56]
Lei, T. Y.; Xie, Y. M.; Wang, X. F.; Miao, S. Y.; Xiong, J.; Yan, C. L. TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium-sulfur batteries. Small 2017, 13, 1701013.
[57]
Luo, L.; Chung, S. H.; Asl, H. Y.; Manthiram, A. Long-life lithium-sulfur batteries with a bifunctional cathode substrate configured with boron carbide nanowires. Adv. Mater. 2018, 30, 1804149.
[58]
Li, G.; Wang, X. L.; Seo, M. H.; Li, M.; Ma, L.; Yuan, Y. F.; Wu, T. P.; Yu, A. P.; Wang, S.; Lu, J. et al. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries. Nat. Commun. 2018, 9, 705.
[59]
Xu, Z. L.; Lin, S. H.; Onofrio, N.; Zhou, L. M.; Shi, F. Y.; Lu, W.; Kang, K.; Zhang, Q.; Lau, S. P. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 2018, 9, 4164.
[60]
Li, L.; Chen, L.; Mukherjee, S.; Gao, J.; Sun, H.; Liu, Z. B.; Ma, X. L.; Gupta, T.; Singh, C. V.; Ren, W. C. et al. Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries. Adv. Mater. 2017, 29, 1602734.
[61]
Pu, J.; Shen, Z. H.; Zheng, J. X.; Wu, W. L.; Zhu, C.; Zhou, Q. W.; Zhang, H. G.; Pan, F. Multifunctional Co3S4@sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy 2017, 37, 7-14.
[62]
Paolella, A.; Demers, H.; Chevallier, P.; Gagnon, C.; Girard, G.; Delaporte, N.; Zhu, W.; Vijh, A.; Guerfi, A.; Zaghib, K. A platinum nanolayer on lithium metal as an interfacial barrier to shuttle effect in Li-S batteries. J. Power Sources, 2019, 427, 201-206.
File
12274_2020_3260_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 September 2020
Revised: 18 November 2020
Accepted: 19 November 2020
Published: 28 December 2020
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was partially supported by the National Key Research and Development Program of China (No. 2017YFA0402800), the National Natural Science Foundation of China (Nos. 51925206 and U1932214), and National Synchrotron Radiation Laboratory (UN2017LHJJ).

Return