Journal Home > Volume 14 , Issue 8

Soft nano electronic materials based on conductive hydrogels have attracted considerable attention due to their exceptional properties. Particle deposition and poor interface compatibility often diminish the mechanical strength and electron transport capabilities of the conductive hydrogel. Mechanical damage can severely impact the performance of the conductive hydrogel and can even damage electronic devices based on the conductive hydrogel. In the current study, a transparent nano-silica hydrogel is prepared by employing an extremely easy-to-operate method. This approach can preclude the deposition of particles via strong mechanical force. In addition, controlling the concentration of the reaction interface makes the hydrogel grow along the mechanical force in the direction with a special directional hole structure formed. The hydrogel is transparent, showing excellent self-healing properties—it can self-heal within 15 seconds. Remarkably, the hydrogel after self-healing maintains its performance. Moreover, it has excellent mechanical properties and can be stretched in length. Up to 1,200% of the original length, the tensile strength of the gel spline can reach 7 MPa. The viscosity of the hydrogel can reach 1.67 × 108 (MPs). In addition, a large amount of Na+ in this hydrogel endow it a conductivity of 389 μs/cm. The conductivity of this hydrogel is adjustable result from the special pore structure. Lastly, the difference between the horizontal and vertical conductivity of the same sample can reach 3-4 times, thus this hydrogel can be used in the field of nano conductive materials.


menu
Abstract
Full text
Outline
About this article

A high-strength self-healing nano-silica hydrogel with anisotropic differential conductivity

Show Author's information Xingyu Huang1Xiaofan Zhou1( )Hao Zhou1Yidan Zhong1Hui Luo1Fan Zhang2
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
Department of Creative Design, Zhicheng College, Fuzhou University, Fuzhou 350000, China

Abstract

Soft nano electronic materials based on conductive hydrogels have attracted considerable attention due to their exceptional properties. Particle deposition and poor interface compatibility often diminish the mechanical strength and electron transport capabilities of the conductive hydrogel. Mechanical damage can severely impact the performance of the conductive hydrogel and can even damage electronic devices based on the conductive hydrogel. In the current study, a transparent nano-silica hydrogel is prepared by employing an extremely easy-to-operate method. This approach can preclude the deposition of particles via strong mechanical force. In addition, controlling the concentration of the reaction interface makes the hydrogel grow along the mechanical force in the direction with a special directional hole structure formed. The hydrogel is transparent, showing excellent self-healing properties—it can self-heal within 15 seconds. Remarkably, the hydrogel after self-healing maintains its performance. Moreover, it has excellent mechanical properties and can be stretched in length. Up to 1,200% of the original length, the tensile strength of the gel spline can reach 7 MPa. The viscosity of the hydrogel can reach 1.67 × 108 (MPs). In addition, a large amount of Na+ in this hydrogel endow it a conductivity of 389 μs/cm. The conductivity of this hydrogel is adjustable result from the special pore structure. Lastly, the difference between the horizontal and vertical conductivity of the same sample can reach 3-4 times, thus this hydrogel can be used in the field of nano conductive materials.

Keywords: hydrogels, self-healing, nanosilica, anisotropic conductivity

References(41)

[1]
Zhao, Y.; Liu, B. R.; Pan, L. J.; Yu, G. H. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ. Sci. 2013, 6, 2856-2870.
[2]
Wang, K.; Zhang, X.; Li, C.; Sun, X. Z.; Meng, Q. H.; Ma, Y. W.; Wei, Z. X. Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv. Mater. 2015, 27, 7451-7457.
[3]
Jin, X. T.; Sun, G. Q.; Zhang, G. F.; Yang, H. S.; Xiao, Y. K.; Gao, J.; Zhang, Z. P.; Qu, L. T. A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance. Nano Res. 2019, 12, 1199-1206.
[4]
Lei, Z. Y.; Wang, Q. K.; Sun, S. T.; Zhu, W. C.; Wu, P. Y. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321.
[5]
Liu, K.; Pan, X. F.; Chen, L. H.; Huang, L. L.; Ni, Y. H.; Liu, J.; Cao, S. L.; Wang, H. P. Ultrasoft self-healing nanoparticle-hydrogel composites with conductive and magnetic properties. ACS Sustainable Chem. Eng. 2018, 6, 6395-6403.
[6]
Shi, Y.; Zhang, J.; Pan, L. J.; Shi, Y.; Yu, G. H. Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today 2016, 11, 738-762.
[7]
Tian, M.; Chen, X.; Sun, S. T.; Yang, D.; Wu, P. Y. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery. Nano Res. 2019, 12, 1121-1127.
[8]
Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Wang, Z. F.; Xue, Q.; Xie, X. M.; Zhi, C. Y. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 2015, 6, 10310.
[9]
Meng, F. L.; Zhong, H. X.; Yan, J. M.; Zhang, X. B. Iron-chelated hydrogel-derived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn-air batteries. Nano Res. 2017, 10, 4436-4447.
[10]
Shi, Z. J.; Gao, X.; Ullah, M. W.; Li, S. X.; Wang, Q.; Yang, G. Electroconductive natural polymer-based hydrogels. Biomaterials 2016, 111, 40-54.
[11]
Deng, G. H.; Li, F. Y.; Yu, H. X.; Liu, F. Y.; Liu, C. Y.; Sun, W. X.; Jiang, H. F.; Chen, Y. M. Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol-gel transitions. ACS Macro Lett. 2012, 1, 275-279.
[12]
Gaina, C.; Ursache, O.; Gaina, V.; Varganici, C. D. Thermally reversible cross-linked poly(ether-urethane)s. Exp. Polym. Lett. 2013, 7, 636-650.
[13]
Wang, Y. Q.; Ding, Y.; Guo, X. L.; Yu, G. H. Conductive polymers for stretchable supercapacitors. Nano Res. 2019, 12, 1978-1987.
[14]
Shi, L. Y.; Wang, F. L.; Zhu, W.; Xu, Z. P.; Fuchs, S.; Hilborn, J.; Zhu, L. J.; Ma, Q.; Wang, Y. J.; Weng, X. S. et al. Self-healing silk fibroin-based hydrogel for bone regeneration: Dynamic metal-ligand self-assembly approach. Adv. Funct. Mater. 2017, 27, 1700591.
[15]
Chen, X. Y.; Fan, M.; Tan, H. P.; Ren, B. W.; Yuan, G. L.; Jia, Y.; Li, J. L.; Xiong, D. S.; Xing, X. D.; Niu, X. H. et al. Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 101, 619-629.
[16]
Lamboni, L.; Gauthier, M.; Yang, G.; Wang, Q. Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnol. Adv. 2015, 33, 1855-1867.
[17]
Shao, C. Y.; Chang, H. L.; Wang, M.; Xu, F.; Yang, J. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces 2017, 9, 28305-28318.
[18]
Pu, W. F.; Jiang, F.; Chen, P.; Wei, B. A POSS based hydrogel with mechanical robustness, cohesiveness and a rapid self-healing ability by electrostatic interaction. Soft Matter 2017, 13, 5645-5648.
[19]
Chen, W. P.; Hao, D. Z.; Hao, W. J.; Guo, X. L.; Jiang, L. Hydrogel with ultrafast self-healing property both in air and underwater. ACS Appl. Mater. Interfaces 2018, 10, 1258-1265.
[20]
You, B. H.; Li, Q. T.; Dong, H.; Huang, T.; Cao, X. D.; Liao, H. Bilayered HA/CS/PEGDA hydrogel with good biocompatibility and self-healing property for potential application in osteochondral defect repair. J. Mater. Sci. Technol. 2018, 34, 1016-1025.
[21]
Chen, X. L.; He, M. M.; Zhang, X. H.; Lu, T.; Hao, W. Z.; Zhao, Y. S.; Liu, Y. M. Metal-free and stretchable conductive hydrogels for high transparent conductive film and flexible strain sensor with high sensitivity. Macromol. Chem. Phys. 2020, 221, 2000054.
[22]
Sun, Y.; Ren, Y. Y.; Li, Q.; Shi, R. W.; Hu, Y.; Guo, J. N.; Sun, Z.; Yan, F. Conductive, stretchable, and self-healing ionic gel based on dynamic covalent bonds and electrostatic interaction. Chin. J. Polym. Sci. 2019, 37, 1053-1059.
[23]
Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J. H.; Pang, C.; Son, S.; Kim, J. H.; Jang, Y. H.; Kim, D. E. et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 2015, 27, 2433-2439.
[24]
Zhang, L. L.; Zhang, Q.; Yu, J.; Ma, J. X.; Wang, Z. G.; Fan, Y. M.; Kuga, S. Strengthened cellulosic gels by the chemical gelation of cellulose via crosslinking with TEOS. Cellulose 2019, 26, 9819-9829.
[25]
Bian, H. Y.; Wei, L. Q.; Lin, C. X.; Ma, Q. L.; Dai, H. Q.; Zhu, J. Y. Lignin-containing cellulose nanofibril-reinforced polyvinyl alcohol hydrogels. ACS Sustainable Chem. Eng. 2018, 6, 4821-4828.
[26]
Chalitangkoon, J.; Wongkittisin, M.; Monvisade, P. Silver loaded hydroxyethylacryl chitosan/sodium alginate hydrogel films for controlled drug release wound dressings. Int. J. Biol. Macromol. 2020, 159, 194-203.
[27]
Zhu, L. T.; Zong, L.; Wu, X. C.; Li, M. L.; Wang, H. S.; You, J.; Li, C. X. Shapeable fibrous aerogels of metal-organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 2018, 12, 4462-4468.
[28]
Yamamoto, T.; Tayakout-Fayolle, M.; Iimura, K.; Satone, H.; Kakibe, T.; Itoh, K.; Maeda, K. Effect of high pressure on growth of colloidal particles during sol-gel phase transition of resorcinol-formaldehyde solution. Adsorption 2019, 25, 1115-1120.
[29]
Li, Y. S.; Hu, X. M.; Cheng, W. M.; Shao, Z. A.; Xue, D.; Zhao, Y. Y.; Lu, W. A novel high-toughness, organic/inorganic double-network fire-retardant gel for coal-seam with high ground temperature. Fuel 2020, 263, 116779.
[30]
Chen, T.; Zhang, S. H.; Lin, Q. H.; Wang, M. J.; Yang, Z.; Zhang, Y. L.; Wang, F. X.; Sun, L. N. Highly sensitive and wide-detection range pressure sensor constructed on a hierarchical-structured conductive fabric as a human-machine interface. Nanoscale 2020, 12, 21271-21279.
[31]
Liang, Y. P.; Zhao, X.; Hu, T. L.; Chen, B. J.; Yin, Z. H.; Ma, P. X.; Guo, B. L. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small 2019, 15, 1900046.
[32]
Yin, F. X.; Yang, J. Z.; Peng, H. F.; Yuan, W. J. Flexible and highly sensitive artificial electronic skin based on graphene/polyamide interlocking fabric. J. Mater. Chem. C 2018, 6, 6840-6846.
[33]
Tang, Z. H.; Yao, D. J.; Du, D. H.; Ouyang, J. Y. Highly machine-washable e-textiles with high strain sensitivity and high thermal conduction. J. Mater. Chem. C 2020, 8, 2741-2748.
[34]
Li, T. K.; Chen, L. L.; Yang, X.; Chen, X.; Zhang, Z. H.; Zhao, T. T.; Li, X. F.; Zhang, J. H. A flexible pressure sensor based on an MXene-textile network structure. J. Mater. Chem. C 2019, 7, 1022-1027.
[35]
Yang, S. T.; Li, C. W.; Chen, X. Y.; Zhao, Y. P.; Zhang, H.; Wen, N. X.; Fan, Z.; Pan, L. J. Facile fabrication of high-performance pen ink-decorated textile strain sensors for human motion detection. ACS Appl. Mater. Interfaces 2020, 12, 19874-19881.
[36]
Pan, S. X.; Xia, M.; Fang, Z. P.; Fu, J.; Wu, Y. T.; Sun, Z. G.; Zhang, Y. H.; He, P. X. High-strength, rapidly self-recoverable, and antifatigue Nano-SiO2/Poly (acrylamide-lauryl methacrylate) composite hydrogels. Macromol. Mater. Eng. 2019, 304, 1900130.
[37]
Wei, P. L.; Chen, T.; Chen, G. Y.; Liu, H. M.; Mugaanire, I. T.; Hou, K.; Zhu, M. F. Conductive self-healing nanocomposite hydrogel skin sensors with antifreezing and thermoresponsive properties. ACS Appl. Mater. Interfaces 2020, 12, 3068-3079.
[38]
Ding, Y. C.; Xu, T.; Onyilagha, O.; Fong, H.; Zhu, Z. T. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl. Mater. Interfaces 2019, 11, 6685-6704.
[39]
Lian, Y. L.; Yu, H.; Wang, M. Y.; Yang, X. N.; Li, Z.; Yang, F.; Wang, Y.; Tai, H. L.; Liao, Y. L.; Wu, J. Y. et al. A multifunctional wearable E-textile via integrated nanowire-coated fabrics. J. Mater. Chem. C 2020, 8, 8399-8409.
[40]
Archana, D.; Dutta, J.; Dutta, P. K. Evaluation of chitosan Nano dressing for wound healing: Characterization, in vitro and in vivo studies. Int. J. Biol. Macromol. 2013, 57, 193-203.
[41]
Sun, W. X.; Jiang, H. T.; Wu, X.; Xu, Z. Y.; Yao, C.; Wang, J.; Qin, M.; Jiang, Q.; Wang, W.; Shi, D. Q. et al. Strong dual-crosslinked hydrogels for ultrasound-triggered drug delivery. Nano Res. 2019, 12, 115-119.
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 November 2020
Revised: 19 November 2020
Accepted: 22 November 2020
Published: 27 February 2021
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was funded by the Natural Science foundation of Jiangsu provincial University (16KJA220005). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Return