Journal Home > Volume 14 , Issue 8

High-rate battery-type cathode materials have attracted wide attention for advanced battery-supercapacitor hybrid (BSH) devices. Herein, a core-shell structure of the hollow mesoporous carbon spheres (HMCS) supported NiSe2 nanosheets (HMCS/NiSe2) is constructed through two-step reactions. The HMCS/NiSe2 shows a max specific capacity of 1,153.5 C·g-1 at the current density of 1 A·g-1, and can remain at 774.5 C·g-1 even at 40 A·g-1 (the retention rate as high as 67.1%) and then the HMCS/NiSe2 electrode can keep 80.5% specific capacity after 5,000 cycles at a current density of 10 A·g-1. Moreover, the density functional theory (DFT) calculation confirmed that the introduction HMCS into NiSe2 made adsorption/desorption of OH- easier, which can achieve higher rate capability. The HMCS/NiSe2//6 M KOH//HMCS hybrid device has energy density of 47.15 Wh·kg-1 and power density of 801.8 W·kg-1. This work provides a feasible electrode material with a high rate and its preparation method for high energy density and power density energy storage devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Favorable anion adsorption/desorption of high rate NiSe2 nanosheets/hollow mesoporous carbon for battery-supercapacitor hybrid devices

Show Author's information Xiaojuan Zhao1Houzhao Wan1( )Pei Liang2( )Nengze Wang1Cong Wang1Yi Gan1Xu Chen1,3Qiuyang Tan1Xiang Liu1Jun Zhang1Yi Wang3Hanbin Wang1( )Hao Wang1( )
Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, School of Microelectronics and Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China
College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
Max Planck Institute for Solid State Research, Heisenbergstr 1, 70569 Stuttgart, Germany

Abstract

High-rate battery-type cathode materials have attracted wide attention for advanced battery-supercapacitor hybrid (BSH) devices. Herein, a core-shell structure of the hollow mesoporous carbon spheres (HMCS) supported NiSe2 nanosheets (HMCS/NiSe2) is constructed through two-step reactions. The HMCS/NiSe2 shows a max specific capacity of 1,153.5 C·g-1 at the current density of 1 A·g-1, and can remain at 774.5 C·g-1 even at 40 A·g-1 (the retention rate as high as 67.1%) and then the HMCS/NiSe2 electrode can keep 80.5% specific capacity after 5,000 cycles at a current density of 10 A·g-1. Moreover, the density functional theory (DFT) calculation confirmed that the introduction HMCS into NiSe2 made adsorption/desorption of OH- easier, which can achieve higher rate capability. The HMCS/NiSe2//6 M KOH//HMCS hybrid device has energy density of 47.15 Wh·kg-1 and power density of 801.8 W·kg-1. This work provides a feasible electrode material with a high rate and its preparation method for high energy density and power density energy storage devices.

Keywords: core-shell structure, supercapacitor, nickel selenide, mesoporous carbon, high rate

References(65)

[1]
Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q. L.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2020, 5, 5-19.
[2]
Boudet, H. S. Public perceptions of and responses to new energy technologies. Nat. Energy 2019, 4, 446-455.
[3]
Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. A. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500-10505.
[4]
Faisal, F.; Stumm, C.; Bertram, M.; Waidhas, F.; Lykhach, Y.; Cherevko, S.; Xiang, F. F.; Ammon, M.; Vorokhta, M.; Šmíd, B. et al. Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes. Nat. Mater. 2018, 17, 592-598.
[5]
Wang, F. X.; Wu, X. W.; Yuan, X. H.; Liu, Z. C.; Zhang, Y.; Fu, L. J.; Zhu, Y. S.; Zhou, Q. M.; Wu, Y. P.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816-6854.
[6]
Zhang, J. Y.; Chen, H. L.; Zhao, M.; Liu, G. T.; Wu, J. 2D nanomaterials for tissue engineering application. Nano Res. 2020, 13, 2019-2034.
[7]
Miao, L.; Song, Z. Y.; Zhu, D. Z.; Li, L. C.; Gan, L. H.; Liu, M. X. Recent advances in carbon-based supercapacitors. Mater. Adv. 2020, 1, 945-966.
[8]
Brousse, T.; Bélanger, D.; Long, J. W. To be or not to be pseudocapacitive? J. Electrochem. Soc. 2015, 162, A5185-A5189.
[9]
Ji, F.; Shi, Y.; Li, M. Q.; Jiang, S. L.; Chen, G.; Liu, F.; Chen, Z. Scalable synthesis of uniform nanosized microporous carbon particles from rigid polymers for rapid ion and molecule adsorption. ACS Appl. Mater. Interfaces 2018, 10, 25429-25437.
[10]
Pan, S. S.; Zhang, X.; Lu, W.; Yu, S. F. Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity. J. Mater. Chem. A 2018, 6, 18687-18693.
[11]
Song, Z. Y.; Duan, H.; Miao, L.; Ruhlmann, L.; Lv, Y. K.; Xiong, W.; Zhu, D. Z.; Li, L. C.; Gan, L. H.; Liu, M. X. Carbon hydrangeas with typical ionic liquid matched pores for advanced supercapacitors. Carbon 2020, 168, 499-507.
[12]
Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233-9280.
[13]
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
[14]
Gan, Y.; Wang, C.; Chen, X.; Liang, P.; Wan, H. Z.; Liu, X.; Tan, Q. Y.; Wu, H.; Rao, H. et al. High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chem. Eng. J. 2020, 392, 123661.
[15]
Li, J. H.; Shi, Q. W.; Shao, Y. L.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Cladding nanostructured AgNWs-MoS2 electrode material for high-rate and long-life transparent in-plane micro-supercapacitor. Energy Storage Mater. 2019, 16, 212-219.
[16]
Hu, H.; Guan, B. Y.; Lou, X. W. Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chem 2016, 1, 102-113.
[17]
Bandyopadhyay, P.; Saeed, G.; Kim, N. H.; Lee, J. H. Zinc-nickel-cobalt oxide@NiMoO4 core-shell nanowire/nanosheet arrays for solid state asymmetric supercapacitors. Chem. Eng. J. 2020, 384, 123357.
[18]
Tan, Q. Y.; Chen, X.; Wan, H. Z.; Zhang, B.; Liu, X.; Li, L.; Wang, C.; Gan, Y.; Liang, P.; Wang, Y. et al. Metal-organic framework-derived high conductivity Fe3C with porous carbon on graphene as advanced anode materials for aqueous battery-supercapacitor hybrid devices. J. Power Sources 2020, 448, 227403.
[19]
Pan, S. S.; Liu, Z. Y.; Lu, W. Synthesis of naked plasmonic/magnetic Au/Fe3O4 nanostructures by plasmon-driven anti-replacement reaction. Nanotechnology 2019, 30, 065605.
[20]
Dan, S.; Wang, H. B.; Wang, Y.; Li, Y.; Liu, X.; Chen, X.; Peng, X. N.; Wang, X. N.; Ruterana, P.; Wang, H. Composition dependent activity of Fe1-xPtx decorated ZnCdS nanocrystals for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2017, 42, 20888-20894.
[21]
Zhang, Z. A.; Shi, X. D.; Yang, X. Synthesis of core-shell NiSe/C nanospheres as anodes for lithium and sodium storage. Electrochim Acta 2016, 208, 238-243.
[22]
Guan, S. D.; Fu, X. L.; Zhang, B.; Lei, M.; Peng, Z. J. Cation-exchange-assisted formation of NiS/SnS2 porous nanowalls with ultrahigh energy density for battery-supercapacitor hybrid devices. J. Mater. Chem. A 2020, 8, 3300-3310.
[23]
Sahoo, R.; Lee, T. H.; Pham, D. T.; Luu, T. H. T.; Lee, Y. H. Fast-charging high-energy battery-supercapacitor hybrid: Anodic reduced graphene oxide-vanadium(IV) oxide sheet-on-sheet heterostructure. ACS Nano 2019, 13, 10776-10786.
[24]
Ge, J. M.; Wang, B.; Wang, J.; Zhang, Q. F.; Lu, B. A. Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv. Energy Mater. 2019, 10, 1903277.
[25]
Wang, C.; Song, Z. H.; Wan, H. Z.; Chen, X.; Tan, Q. Y.; Gan, Y.; Liang, P.; Zhang, J.; Wang, H. B.; Wang, Y. et al. Ni-Co selenide nanowires supported on conductive wearable textile as cathode for flexible battery-supercapacitor hybrid devices. Chem. Eng. J. 2020, 400, 125955.
[26]
Shi, X.; Wang, H.; Kannan, P.; Ding, J. T.; Ji, S.; Liu, F. S.; Gai, H. J.; Wang, R. F. Rich-grain-boundary of Ni3Se2 nanowire arrays as multifunctional electrode for electrochemical energy storage and conversion applications. J. Mater. Chem. A 2019, 7, 3344-3352.
[27]
Hussain, N.; Wu, F. F.; Xu, L. Q.; Qian, Y. T. Co0.85Se hollow spheres constructed of ultrathin 2D mesoporous nanosheets as a novel bifunctional-electrode for supercapacitor and water splitting. Nano Res. 2019, 12, 2941-2946.
[28]
Wang, S. L.; Li, W.; Xin, L. P.; Wu, M.; Long, Y.; Huang, H. T.; Lou, X. J. Facile synthesis of truncated cube-like NiSe2 single crystals for high-performance asymmetric supercapacitors. Chem. Eng. J. 2017, 330, 1334-1341.
[29]
Lu, M.; Yuan, X. P.; Guan, X. H.; Wang, G. S. Synthesis of nickel chalcogenide hollow spheres using an l-cysteine-assisted hydrothermal process for efficient supercapacitor electrodes. J. Mater. Chem. A 2017, 5, 3621-3627.
[30]
Cheng, M.; Fan, H. S.; Xu, Y. Y.; Wang, R. M.; Zhang, X. X. Hollow Co2P nanoflowers assembled from nanorods for ultralong cycle-life supercapacitors. Nanoscale 2017, 9, 14162-14171.
[31]
Ma, Y.; Wu, D. L.; Wang, T.; Jia, D. Z. Nitrogen, phosphorus Co-doped carbon obtained from amino acid based resin xerogel as efficient electrode for supercapacitor. ACS Appl. Energy Mater. 2019, 3, 957-969.
[32]
Fu, Y. S.; Zhou, Y.; Peng, Q.; Yu, C. Y.; Wu, Z.; Sun, J. W.; Zhu, J. W.; Wang, X. Hollow mesoporous carbon spheres enwrapped by small-sized and ultrathin nickel hydroxide nanosheets for high-performance hybrid supercapacitors. J. Power Sources 2018, 402, 43-52.
[33]
Fu, X. M.; Li, Z. E.; Xu, L. M.; Liao, M.; Sun, H.; Xie, S. L.; Sun, X. M.; Wang, B. J.; Peng, H. S. Amphiphilic core-sheath structured composite fiber for comprehensively performed supercapacitor. Sci. China Mater. 2019, 62, 955-964.
[34]
Yan, J. J.; Miao, L.; Duan, H.; Zhu, D. Z.; Lv, Y. K.; Xiong, W.; Li, L. C.; Gan, L. H.; Liu, M. X. Core-shell hierarchical porous carbon spheres with N/O doping for efficient energy storage. Electrochim Acta 2020, 358, 136899.
[35]
Miao, Y. D.; Zhang, X. P.; Zhan, J.; Sui, Y. W.; Qi, J. Q.; Wei, F. X.; Meng, Q. K.; He, Y. Z.; Ren, Y. J.; Zhan, Z. Z. et al. Hierarchical NiS@CoS with controllable core-shell structure by two-step strategy for supercapacitor electrodes. ACS Appl. Mater. Interfaces 2019, 1, 1901618.
[36]
Lima, N.; Baptista, A. C.; Faustino, B. M. M.; Taborda, S.; Marques, A.; Ferreira, I. Carbon threads sweat-based supercapacitors for electronic textiles. Sci. Rep. 2020, 10, 7703.
[37]
Du, J.; Liu, L.; Yu, Y. F.; Zhang, Y.; Lv, H. J.; Chen, A. B. Interpolation strategy for monodisperse hollow mesoporous carbon spheres in high performance supercapacitor. J. Power Sources 2019, 434, 226720.
[38]
Zhang, H. W.; Noonan, O.; Huang, X. D.; Yang, Y. N.; Xu, C.; Zhou, L.; Yu, C. Z. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano 2016, 10, 4579-4586.
[39]
Su, D. Q.; Huang, M.; Zhang, J. H.; Guo, X. M.; Chen, J. L.; Xue, Y. C.; Yuan, A. H.; Kong, Q. H. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Res. 2020, 13, 2862-2868.
[40]
Sun, H. Y.; Liu, S. W.; Lu, Q. F.; Zhong, H. Y. Template-synthesis of hierarchical Ni(OH)2 hollow spheres with excellent performance as supercapacitor. Mater. Lett. 2014, 128, 136-139.
[41]
Ming, F. W.; Liang, H. F.; Shi, H. H.; Xu, X.; Mei, G.; Wang, Z. C. MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. J. Mater. Chem. A 2016, 4, 15148-15155.
[42]
Wang, H. B.; Li, Y.; Shu, D.; Chen, X.; Liu, X.; Wang, X. N.; Zhang, J.; Wang, H. CoPtx-loaded Zn0.5Cd0.5S nanocomposites for enhanced visible light photocatalytic H2 production. Int. J. Energy Res. 2016, 40, 280-1286.
[43]
Ge, P.; Li, S. J.; Xu, L. Q.; Zou, K. Y.; Gao, X.; Cao, X. Y.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Hierarchical hollow-microsphere metal-selenide@carbon composites with rational surface engineering for advanced sodium storage. Adv. Energy Mater. 2019, 9, 1803035.
[44]
Gu, Y.; Fan, L. Q.; Huang, J. L.; Geng, C. L.; Lin, J. M.; Huang, M. L.; Huang, Y. F.; Wu, J. H. N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. J. Power Sources 2019, 425, 60-68.
[45]
Zhou, Z. Y.; Miao, L.; Duan, H.; Wang, Z. W.; Lv, Y. K.; Xiong, W.; Zhu, D. Z.; Li, L. C.; Liu, M. X.; Gan, L. H. Highly active N, O-doped hierarchical porous carbons for high-energy supercapacitors. Chin. Chem. Lett. 2020, 31, 1226-1230.
[46]
Xu, J. S.; Sun, Y. D.; Lu, M. J.; Wang, L.; Zhang, J.; Liu, X. Y. One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Sci.China Mater. 2019, 62, 699-710.
[47]
Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 2014, 7, 1597-1614.
[48]
Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925-14931.
[49]
Liu, J. L.; Wang, J.; Xu, C. H.; Jiang, H.; Li, C. Z.; Zhang, L. L.; Lin, J. Y.; Shen, Z. X. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design. Adv. Sci. 2018, 5, 1700322.
[50]
Bao, Q. L.; Wu, J. H.; Fan, L. Q.; Ge, J. H.; Dong, J.; Jia, J. B.; Zeng, J. L.; Lin, J. M. Electrodeposited NiSe2 on carbon fiber cloth as a flexible electrode for high-performance supercapacitors. J. Energy Chem. 2017, 26, 1252-1259.
[51]
Mohamed, S. G.; Hussain, I.; Shim, J. J. One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 2018, 10, 6620-6628.
[52]
Li, R.; Wang, S. L.; Wang, J. P.; Huang, Z. C. Ni3S2@CoS core-shell nano-triangular pyramid arrays on Ni foam for high-performance supercapacitors. Phys. Chem. Chem. Phys. 2015, 17, 16434-16442.
[53]
Qu, G. M.; Sun, P. X.; Xiang, G. T.; Yin, J. M.; Wei, Q.; Wang, C. G.; Xu, X. J. Moss-like nickel-cobalt phosphide nanostructures for highly flexible all-solid-state hybrid supercapacitors with excellent electrochemical performances. Appl. Mater. Today 2020, 20, 100713.
[54]
Liu, S. D.; Yin, Y.; Shen, Y.; Hui, K. S.; Chun, Y. T.; Kim, J. M.; Hui, K. N.; Zhang, L. P.; Jun, S. C. Phosphorus regulated cobalt oxide@nitrogen-doped carbon nanowires for flexible quasi-solid-state supercapacitors. Small 2020, 16, 1906458.
[55]
Hao, T. Z.; Liu, Y. Y.; Liu, G. L.; Peng, C. X.; Chen, B. J.; Feng, Y. T.; Ru, J. J.; Yang, J. H. Insight into faradaic mechanism of polyaniline@NiSe2 core-shell nanotubes in high-performance supercapacitors. Energy Storage Mater. 2019, 23, 225-232.
[56]
Chen, W. Y.; Zhang, X. M.; Mo, L. E.; Zhang, Y. S.; Chen, S. H.; Zhang, X. X.; Hu, L. H. NiCo2S4 quantum dots with high redox reactivity for hybrid supercapacitors. Chem. Eng. J. 2020, 388, 124109.
[57]
Kuai, Y. Q.; Wang, T. L.; Liu, M. T.; Ma, H. W.; Zhang, C. J. Flower-like Ni0·85Se nanosheets with enhanced performance toward hybrid supercapacitor. Electrochim. Acta 2019, 321, 134701.
[58]
Wu, C.; Cai, J. J.; Zhu, Y.; Zhang, K. L. Nanoforest of hierarchical core/shell CuO@NiCo2O4 nanowire heterostructure arrays on nickel foam for high-performance supercapacitors. RSC Adv. 2016, 6, 63905-63914.
[59]
Chen, B.; Tian, Y. F.; Yang, Z. X.; Ruan, Y. J.; Jiang, J. J.; Wang, C. D. Construction of (Ni, Cu)Se2//reduced graphene oxide for high energy density asymmetric supercapacitor. ChemElectroChem 2017, 4, 3004-3010.
[60]
Reddy, B. J.; Vickraman, P.; Justin, A. S. Electrochemical performance of nitrogen-doped graphene anchored nickel sulfide nanoflakes for supercapacitors. Appl. Surf. Sci. 2019, 483, 1142-1148.
[61]
Tian, Y. F.; Ruan, Y. J.; Zhang, J. Y.; Yang, Z. X.; Jiang, J. J.; Wang, C. D. Controllable growth of NiSe nanorod arrays via one-pot hydrothermal method for high areal-capacitance supercapacitors. Electrochim. Acta 2017, 250, 327-334.
[62]
Peng, H.; Ma, G. F.; Sun, K. J.; Zhang, Z. G.; Li, J. D.; Zhou, X. Z.; Lei, Z. Q. A novel aqueous asymmetric supercapacitor based on petal-like cobalt selenide nanosheets and nitrogen-doped porous carbon networks electrodes. J. Power Sources 2015, 297, 351-358.
[63]
Lai, H. W.; Wu, Q.; Zhao, J.; Shang, L. M.; Li, H.; Che, R. C.; Lyu, Z. Y.; Xiong, J. F.; Yang, L. J.; Wang, X. Z. et al. Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy Environ. Sci. 2016, 9, 2053-2060.
[64]
Lu, X. F.; Wu, D. J.; Li, R. Z.; Li, Q.; Ye, S. H.; Tong, Y. X.; Li, G. R. Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 4706-4713.
[65]
Nagaraju, G.; Cha, S. M.; Sekhar, S. C.; Yu, J. S. Metallic layered polyester fabric enabled nickel selenide nanostructures as highly conductive and binderless electrode with superior energy storage performance. Adv. Energy Mater. 2017, 7, 1601362.
File
12274_2020_3257_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 August 2020
Revised: 22 November 2020
Accepted: 22 November 2020
Published: 23 December 2020
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52002122), the Science and Technology Department of Hubei Province (No. 2019AAA038) and the Wuhan Yellow Crane Talent Program (No. 2017-02). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 823717-ESTEEM3.

Return