[1]
Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q. L.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2020, 5, 5-19.
[2]
Boudet, H. S. Public perceptions of and responses to new energy technologies. Nat. Energy 2019, 4, 446-455.
[3]
Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. A. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500-10505.
[4]
Faisal, F.; Stumm, C.; Bertram, M.; Waidhas, F.; Lykhach, Y.; Cherevko, S.; Xiang, F. F.; Ammon, M.; Vorokhta, M.; Šmíd, B. et al. Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes. Nat. Mater. 2018, 17, 592-598.
[5]
Wang, F. X.; Wu, X. W.; Yuan, X. H.; Liu, Z. C.; Zhang, Y.; Fu, L. J.; Zhu, Y. S.; Zhou, Q. M.; Wu, Y. P.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816-6854.
[6]
Zhang, J. Y.; Chen, H. L.; Zhao, M.; Liu, G. T.; Wu, J. 2D nanomaterials for tissue engineering application. Nano Res. 2020, 13, 2019-2034.
[7]
Miao, L.; Song, Z. Y.; Zhu, D. Z.; Li, L. C.; Gan, L. H.; Liu, M. X. Recent advances in carbon-based supercapacitors. Mater. Adv. 2020, 1, 945-966.
[8]
Brousse, T.; Bélanger, D.; Long, J. W. To be or not to be pseudocapacitive? J. Electrochem. Soc. 2015, 162, A5185-A5189.
[9]
Ji, F.; Shi, Y.; Li, M. Q.; Jiang, S. L.; Chen, G.; Liu, F.; Chen, Z. Scalable synthesis of uniform nanosized microporous carbon particles from rigid polymers for rapid ion and molecule adsorption. ACS Appl. Mater. Interfaces 2018, 10, 25429-25437.
[10]
Pan, S. S.; Zhang, X.; Lu, W.; Yu, S. F. Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity. J. Mater. Chem. A 2018, 6, 18687-18693.
[11]
Song, Z. Y.; Duan, H.; Miao, L.; Ruhlmann, L.; Lv, Y. K.; Xiong, W.; Zhu, D. Z.; Li, L. C.; Gan, L. H.; Liu, M. X. Carbon hydrangeas with typical ionic liquid matched pores for advanced supercapacitors. Carbon 2020, 168, 499-507.
[12]
Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233-9280.
[13]
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
[14]
Gan, Y.; Wang, C.; Chen, X.; Liang, P.; Wan, H. Z.; Liu, X.; Tan, Q. Y.; Wu, H.; Rao, H. et al. High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chem. Eng. J. 2020, 392, 123661.
[15]
Li, J. H.; Shi, Q. W.; Shao, Y. L.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Cladding nanostructured AgNWs-MoS2 electrode material for high-rate and long-life transparent in-plane micro-supercapacitor. Energy Storage Mater. 2019, 16, 212-219.
[16]
Hu, H.; Guan, B. Y.; Lou, X. W. Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chem 2016, 1, 102-113.
[17]
Bandyopadhyay, P.; Saeed, G.; Kim, N. H.; Lee, J. H. Zinc-nickel-cobalt oxide@NiMoO4 core-shell nanowire/nanosheet arrays for solid state asymmetric supercapacitors. Chem. Eng. J. 2020, 384, 123357.
[18]
Tan, Q. Y.; Chen, X.; Wan, H. Z.; Zhang, B.; Liu, X.; Li, L.; Wang, C.; Gan, Y.; Liang, P.; Wang, Y. et al. Metal-organic framework-derived high conductivity Fe3C with porous carbon on graphene as advanced anode materials for aqueous battery-supercapacitor hybrid devices. J. Power Sources 2020, 448, 227403.
[19]
Pan, S. S.; Liu, Z. Y.; Lu, W. Synthesis of naked plasmonic/magnetic Au/Fe3O4 nanostructures by plasmon-driven anti-replacement reaction. Nanotechnology 2019, 30, 065605.
[20]
Dan, S.; Wang, H. B.; Wang, Y.; Li, Y.; Liu, X.; Chen, X.; Peng, X. N.; Wang, X. N.; Ruterana, P.; Wang, H. Composition dependent activity of Fe1-xPtx decorated ZnCdS nanocrystals for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2017, 42, 20888-20894.
[21]
Zhang, Z. A.; Shi, X. D.; Yang, X. Synthesis of core-shell NiSe/C nanospheres as anodes for lithium and sodium storage. Electrochim Acta 2016, 208, 238-243.
[22]
Guan, S. D.; Fu, X. L.; Zhang, B.; Lei, M.; Peng, Z. J. Cation-exchange-assisted formation of NiS/SnS2 porous nanowalls with ultrahigh energy density for battery-supercapacitor hybrid devices. J. Mater. Chem. A 2020, 8, 3300-3310.
[23]
Sahoo, R.; Lee, T. H.; Pham, D. T.; Luu, T. H. T.; Lee, Y. H. Fast-charging high-energy battery-supercapacitor hybrid: Anodic reduced graphene oxide-vanadium(IV) oxide sheet-on-sheet heterostructure. ACS Nano 2019, 13, 10776-10786.
[24]
Ge, J. M.; Wang, B.; Wang, J.; Zhang, Q. F.; Lu, B. A. Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv. Energy Mater. 2019, 10, 1903277.
[25]
Wang, C.; Song, Z. H.; Wan, H. Z.; Chen, X.; Tan, Q. Y.; Gan, Y.; Liang, P.; Zhang, J.; Wang, H. B.; Wang, Y. et al. Ni-Co selenide nanowires supported on conductive wearable textile as cathode for flexible battery-supercapacitor hybrid devices. Chem. Eng. J. 2020, 400, 125955.
[26]
Shi, X.; Wang, H.; Kannan, P.; Ding, J. T.; Ji, S.; Liu, F. S.; Gai, H. J.; Wang, R. F. Rich-grain-boundary of Ni3Se2 nanowire arrays as multifunctional electrode for electrochemical energy storage and conversion applications. J. Mater. Chem. A 2019, 7, 3344-3352.
[27]
Hussain, N.; Wu, F. F.; Xu, L. Q.; Qian, Y. T. Co0.85Se hollow spheres constructed of ultrathin 2D mesoporous nanosheets as a novel bifunctional-electrode for supercapacitor and water splitting. Nano Res. 2019, 12, 2941-2946.
[28]
Wang, S. L.; Li, W.; Xin, L. P.; Wu, M.; Long, Y.; Huang, H. T.; Lou, X. J. Facile synthesis of truncated cube-like NiSe2 single crystals for high-performance asymmetric supercapacitors. Chem. Eng. J. 2017, 330, 1334-1341.
[29]
Lu, M.; Yuan, X. P.; Guan, X. H.; Wang, G. S. Synthesis of nickel chalcogenide hollow spheres using an l-cysteine-assisted hydrothermal process for efficient supercapacitor electrodes. J. Mater. Chem. A 2017, 5, 3621-3627.
[30]
Cheng, M.; Fan, H. S.; Xu, Y. Y.; Wang, R. M.; Zhang, X. X. Hollow Co2P nanoflowers assembled from nanorods for ultralong cycle-life supercapacitors. Nanoscale 2017, 9, 14162-14171.
[31]
Ma, Y.; Wu, D. L.; Wang, T.; Jia, D. Z. Nitrogen, phosphorus Co-doped carbon obtained from amino acid based resin xerogel as efficient electrode for supercapacitor. ACS Appl. Energy Mater. 2019, 3, 957-969.
[32]
Fu, Y. S.; Zhou, Y.; Peng, Q.; Yu, C. Y.; Wu, Z.; Sun, J. W.; Zhu, J. W.; Wang, X. Hollow mesoporous carbon spheres enwrapped by small-sized and ultrathin nickel hydroxide nanosheets for high-performance hybrid supercapacitors. J. Power Sources 2018, 402, 43-52.
[33]
Fu, X. M.; Li, Z. E.; Xu, L. M.; Liao, M.; Sun, H.; Xie, S. L.; Sun, X. M.; Wang, B. J.; Peng, H. S. Amphiphilic core-sheath structured composite fiber for comprehensively performed supercapacitor. Sci. China Mater. 2019, 62, 955-964.
[34]
Yan, J. J.; Miao, L.; Duan, H.; Zhu, D. Z.; Lv, Y. K.; Xiong, W.; Li, L. C.; Gan, L. H.; Liu, M. X. Core-shell hierarchical porous carbon spheres with N/O doping for efficient energy storage. Electrochim Acta 2020, 358, 136899.
[35]
Miao, Y. D.; Zhang, X. P.; Zhan, J.; Sui, Y. W.; Qi, J. Q.; Wei, F. X.; Meng, Q. K.; He, Y. Z.; Ren, Y. J.; Zhan, Z. Z. et al. Hierarchical NiS@CoS with controllable core-shell structure by two-step strategy for supercapacitor electrodes. ACS Appl. Mater. Interfaces 2019, 1, 1901618.
[36]
Lima, N.; Baptista, A. C.; Faustino, B. M. M.; Taborda, S.; Marques, A.; Ferreira, I. Carbon threads sweat-based supercapacitors for electronic textiles. Sci. Rep. 2020, 10, 7703.
[37]
Du, J.; Liu, L.; Yu, Y. F.; Zhang, Y.; Lv, H. J.; Chen, A. B. Interpolation strategy for monodisperse hollow mesoporous carbon spheres in high performance supercapacitor. J. Power Sources 2019, 434, 226720.
[38]
Zhang, H. W.; Noonan, O.; Huang, X. D.; Yang, Y. N.; Xu, C.; Zhou, L.; Yu, C. Z. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano 2016, 10, 4579-4586.
[39]
Su, D. Q.; Huang, M.; Zhang, J. H.; Guo, X. M.; Chen, J. L.; Xue, Y. C.; Yuan, A. H.; Kong, Q. H. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Res. 2020, 13, 2862-2868.
[40]
Sun, H. Y.; Liu, S. W.; Lu, Q. F.; Zhong, H. Y. Template-synthesis of hierarchical Ni(OH)2 hollow spheres with excellent performance as supercapacitor. Mater. Lett. 2014, 128, 136-139.
[41]
Ming, F. W.; Liang, H. F.; Shi, H. H.; Xu, X.; Mei, G.; Wang, Z. C. MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. J. Mater. Chem. A 2016, 4, 15148-15155.
[42]
Wang, H. B.; Li, Y.; Shu, D.; Chen, X.; Liu, X.; Wang, X. N.; Zhang, J.; Wang, H. CoPtx-loaded Zn0.5Cd0.5S nanocomposites for enhanced visible light photocatalytic H2 production. Int. J. Energy Res. 2016, 40, 280-1286.
[43]
Ge, P.; Li, S. J.; Xu, L. Q.; Zou, K. Y.; Gao, X.; Cao, X. Y.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Hierarchical hollow-microsphere metal-selenide@carbon composites with rational surface engineering for advanced sodium storage. Adv. Energy Mater. 2019, 9, 1803035.
[44]
Gu, Y.; Fan, L. Q.; Huang, J. L.; Geng, C. L.; Lin, J. M.; Huang, M. L.; Huang, Y. F.; Wu, J. H. N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. J. Power Sources 2019, 425, 60-68.
[45]
Zhou, Z. Y.; Miao, L.; Duan, H.; Wang, Z. W.; Lv, Y. K.; Xiong, W.; Zhu, D. Z.; Li, L. C.; Liu, M. X.; Gan, L. H. Highly active N, O-doped hierarchical porous carbons for high-energy supercapacitors. Chin. Chem. Lett. 2020, 31, 1226-1230.
[46]
Xu, J. S.; Sun, Y. D.; Lu, M. J.; Wang, L.; Zhang, J.; Liu, X. Y. One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Sci.China Mater. 2019, 62, 699-710.
[47]
Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 2014, 7, 1597-1614.
[48]
Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925-14931.
[49]
Liu, J. L.; Wang, J.; Xu, C. H.; Jiang, H.; Li, C. Z.; Zhang, L. L.; Lin, J. Y.; Shen, Z. X. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design. Adv. Sci. 2018, 5, 1700322.
[50]
Bao, Q. L.; Wu, J. H.; Fan, L. Q.; Ge, J. H.; Dong, J.; Jia, J. B.; Zeng, J. L.; Lin, J. M. Electrodeposited NiSe2 on carbon fiber cloth as a flexible electrode for high-performance supercapacitors. J. Energy Chem. 2017, 26, 1252-1259.
[51]
Mohamed, S. G.; Hussain, I.; Shim, J. J. One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 2018, 10, 6620-6628.
[52]
Li, R.; Wang, S. L.; Wang, J. P.; Huang, Z. C. Ni3S2@CoS core-shell nano-triangular pyramid arrays on Ni foam for high-performance supercapacitors. Phys. Chem. Chem. Phys. 2015, 17, 16434-16442.
[53]
Qu, G. M.; Sun, P. X.; Xiang, G. T.; Yin, J. M.; Wei, Q.; Wang, C. G.; Xu, X. J. Moss-like nickel-cobalt phosphide nanostructures for highly flexible all-solid-state hybrid supercapacitors with excellent electrochemical performances. Appl. Mater. Today 2020, 20, 100713.
[54]
Liu, S. D.; Yin, Y.; Shen, Y.; Hui, K. S.; Chun, Y. T.; Kim, J. M.; Hui, K. N.; Zhang, L. P.; Jun, S. C. Phosphorus regulated cobalt oxide@nitrogen-doped carbon nanowires for flexible quasi-solid-state supercapacitors. Small 2020, 16, 1906458.
[55]
Hao, T. Z.; Liu, Y. Y.; Liu, G. L.; Peng, C. X.; Chen, B. J.; Feng, Y. T.; Ru, J. J.; Yang, J. H. Insight into faradaic mechanism of polyaniline@NiSe2 core-shell nanotubes in high-performance supercapacitors. Energy Storage Mater. 2019, 23, 225-232.
[56]
Chen, W. Y.; Zhang, X. M.; Mo, L. E.; Zhang, Y. S.; Chen, S. H.; Zhang, X. X.; Hu, L. H. NiCo2S4 quantum dots with high redox reactivity for hybrid supercapacitors. Chem. Eng. J. 2020, 388, 124109.
[57]
Kuai, Y. Q.; Wang, T. L.; Liu, M. T.; Ma, H. W.; Zhang, C. J. Flower-like Ni0·85Se nanosheets with enhanced performance toward hybrid supercapacitor. Electrochim. Acta 2019, 321, 134701.
[58]
Wu, C.; Cai, J. J.; Zhu, Y.; Zhang, K. L. Nanoforest of hierarchical core/shell CuO@NiCo2O4 nanowire heterostructure arrays on nickel foam for high-performance supercapacitors. RSC Adv. 2016, 6, 63905-63914.
[59]
Chen, B.; Tian, Y. F.; Yang, Z. X.; Ruan, Y. J.; Jiang, J. J.; Wang, C. D. Construction of (Ni, Cu)Se2//reduced graphene oxide for high energy density asymmetric supercapacitor. ChemElectroChem 2017, 4, 3004-3010.
[60]
Reddy, B. J.; Vickraman, P.; Justin, A. S. Electrochemical performance of nitrogen-doped graphene anchored nickel sulfide nanoflakes for supercapacitors. Appl. Surf. Sci. 2019, 483, 1142-1148.
[61]
Tian, Y. F.; Ruan, Y. J.; Zhang, J. Y.; Yang, Z. X.; Jiang, J. J.; Wang, C. D. Controllable growth of NiSe nanorod arrays via one-pot hydrothermal method for high areal-capacitance supercapacitors. Electrochim. Acta 2017, 250, 327-334.
[62]
Peng, H.; Ma, G. F.; Sun, K. J.; Zhang, Z. G.; Li, J. D.; Zhou, X. Z.; Lei, Z. Q. A novel aqueous asymmetric supercapacitor based on petal-like cobalt selenide nanosheets and nitrogen-doped porous carbon networks electrodes. J. Power Sources 2015, 297, 351-358.
[63]
Lai, H. W.; Wu, Q.; Zhao, J.; Shang, L. M.; Li, H.; Che, R. C.; Lyu, Z. Y.; Xiong, J. F.; Yang, L. J.; Wang, X. Z. et al. Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy Environ. Sci. 2016, 9, 2053-2060.
[64]
Lu, X. F.; Wu, D. J.; Li, R. Z.; Li, Q.; Ye, S. H.; Tong, Y. X.; Li, G. R. Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 4706-4713.
[65]
Nagaraju, G.; Cha, S. M.; Sekhar, S. C.; Yu, J. S. Metallic layered polyester fabric enabled nickel selenide nanostructures as highly conductive and binderless electrode with superior energy storage performance. Adv. Energy Mater. 2017, 7, 1601362.