Journal Home > Volume 14 , Issue 9

Conventional bioelectrical sensors and systems integrate multiple power harvesting, signal amplification and data transmission components for wireless biological signal detection. This paper reports the real-time biophysical and biochemical activities can be optically captured using a microscale light-emitting diode (micro-LED), eliminating the need for complicated sensing circuit. Such a thin-film diode based device simultaneously absorbs and emits photons, enabling wireless power harvesting and signal transmission. Additionally, owing to its strong photon-recycling effects, the micro-LED’s photoluminescence (PL) emission exhibits a superlinear dependence on the external conductance. Taking advantage of these unique mechanisms, instantaneous biophysical signals including galvanic skin response, pressure and temperature, and biochemical signals like ascorbic acid concentration, can be optically monitored, and it demonstrates that such an optoelectronic sensing technique outperforms a traditional tethered, electrically based sensing circuit, in terms of its footprint, accuracy and sensitivity. This presented optoelectronic sensing approach could establish promising routes to advanced biological sensors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Optoelectronic sensing of biophysical and biochemical signals based on photon recycling of a micro-LED

Show Author's information He Ding1Guoqing Lv1Zhao Shi2Dali Cheng2Yang Xie2Yunxiang Huang3Lan Yin3Jian Yang1Yongtian Wang1Xing Sheng2( )
Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Abstract

Conventional bioelectrical sensors and systems integrate multiple power harvesting, signal amplification and data transmission components for wireless biological signal detection. This paper reports the real-time biophysical and biochemical activities can be optically captured using a microscale light-emitting diode (micro-LED), eliminating the need for complicated sensing circuit. Such a thin-film diode based device simultaneously absorbs and emits photons, enabling wireless power harvesting and signal transmission. Additionally, owing to its strong photon-recycling effects, the micro-LED’s photoluminescence (PL) emission exhibits a superlinear dependence on the external conductance. Taking advantage of these unique mechanisms, instantaneous biophysical signals including galvanic skin response, pressure and temperature, and biochemical signals like ascorbic acid concentration, can be optically monitored, and it demonstrates that such an optoelectronic sensing technique outperforms a traditional tethered, electrically based sensing circuit, in terms of its footprint, accuracy and sensitivity. This presented optoelectronic sensing approach could establish promising routes to advanced biological sensors.

Keywords: photoluminescence, optoelectronics, photon recycling, microscale light-emitting diodes (micro-LEDs), biosensors

References(35)

[1]
Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838-843.
[2]
Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509-514.
[3]
Imani, S.; Bandodkar, A. J.; Mohan, A. M. V.; Kumar, R.; Yu, S. F.; Wang, J.; Mercier, P. P. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 2016, 7, 11650.
[4]
Kim, J.; Campbell, A. S.; de Ávila, B. E. F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389-406.
[5]
Chung, H. U.; Kim, B. H.; Lee, J. Y.; Lee, J.; Xie, Z. Q.; Ibler, E. M.; Lee, K.; Banks, A.; Jeong, J. Y.; Kim, J. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 2019, 363, eaau0780.
[6]
Reynolds, M. F.; Guimarães, M. H. D.; Gao, H.; Kang, K.; Cortese, A. J.; Ralph, D. C.; Park, J.; McEuen, P. L. MoS2 pixel arrays for real-time photoluminescence imaging of redox molecules. Sci. Adv. 2019, 5, eaat9476.
[7]
Piech, D. K.; Johnson, B. C.; Shen, K.; Ghanbari, M. M.; Li, K. Y.; Neely, R. M.; Kay, J. E.; Carmena, J. M.; Maharbiz, M. M.; Muller, R. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat. Biomed. Eng. 2020, 4, 207-222.
[8]
Bariya, M.; Nyein, H. Y. Y.; Javey, A. Wearable sweat sensors. Nat. Electron. 2018, 1, 160-171.
[9]
Cortese, A. J.; Smart, C. L.; Wang, T. Y.; Reynolds, M. F.; Norris, S. L.; Ji, Y. X.; Lee, S.; Mok, A.; Wu, C. Y.; Xia, F. et al. Microscopic sensors using optical wireless integrated circuits. Proc. Natl. Acad. Sci. USA 2020, 117, 9173-9179.
[10]
Lou, Z.; Wang, L. L.; Jiang, K.; Wei, Z. M.; Shen, G. Z. Reviews of wearable healthcare systems: Materials, devices and system integration. Mater. Sci. Eng. R Rep. 2020, 140, 100523.
[11]
Neamen, D. A. Semiconductor Physics and Devices, 3rd ed.; McGraw-Hill: Boston, 2003.
[12]
Ding, H.; Hong, H.; Cheng, D. L.; Shi, Z.; Liu, K. H.; Sheng, X. Power- and spectral-dependent photon-recycling effects in a double-junction gallium arsenide photodiode. ACS Photonics 2019, 6, 59-65.
[13]
Sheng, X.; Yun, M. H.; Zhang, C.; Al-Okaily, A. M.; Masouraki, M.; Shen, L.; Wang, S. D.; Wilson, W. L.; Kim, J. Y.; Ferreira, P. et al. Device architectures for enhanced photon recycling in thin-film multijunction solar cells. Adv. Energy Mater. 2015, 5, 1400919.
[14]
Peng, M. Z.; Li, Z.; Liu, C. H.; Zheng, Q.; Shi, X. Q.; Song, M.; Zhang, Y.; Du, S. Y.; Zhai, J. Y.; Wang, Z. L. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging. ACS Nano 2015, 9, 3143-3150.
[15]
Stolterfoht, M.; Le Corre, V. M.; Feuerstein, M.; Caprioglio, P.; Koster, L. J. A.; Neher, D. Voltage-dependent photoluminescence and how it correlates with the fill factor and open-circuit voltage in perovskite solar cells. ACS Energy Lett. 2019, 4, 2887-2892.
[16]
Macka, M.; Piasecki, T.; Dasgupta, P. K. Light-emitting diodes for analytical chemistry. Annu. Rev. Anal. Chem. 2014, 7, 183-207.
[17]
Ding, H.; Lu, L. H.; Shi, Z.; Wang, D.; Li, L. Z.; Li, X. C.; Ren, Y. Q.; Liu, C. B.; Cheng, D. L.; Kim, H. et al. Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources. Proc. Natl. Acad. Sci. USA 2018, 115, 6632-6637.
[18]
Martı́, A.; Balenzategui, J. L.; Reyna, R. F. Photon recycling and shockley’s diode equation. J. Appl. Phys. 1997, 82, 4067-4075.
[19]
Miller, O. D.; Yablonovitch, E.; Kurtz, S. R. Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit. IEEE J. Photovolt. 2012, 2, 303-311.
[20]
Tex, D. M.; Imaizumi, M.; Akiyama, H.; Kanemitsu, Y. Internal luminescence efficiencies in InGaP/GaAs/Ge triple-junction solar cells evaluated from photoluminescence through optical coupling between subcells. Sci. Rep. 2016, 6, 38297.
[21]
Su, Z. C.; Xu, S. J.; Wang, X. H.; Ning, J. Q.; Wang, R. X.; Lu, S. L.; Dong, J. R.; Yang, H. Effective photon recycling and super long lived minority carriers in GaInP/GaAs heterostructure solar cell: A time-resolved optical study. IEEE J. Photovolt. 2018, 8, 820-824.
[22]
Richter, C. P. Physiological factors involved in the electrical resistance of the skin. Am. J. Physiol-Legacy Content 1929, 88, 596-615.
[23]
Boucsein, W. Electrodermal Activity, 2nd ed.; Springer: New York, 2012.
[24]
Sliney, D. H.; Wolbarsht, M. Safety with Lasers and other Optical Sources: A Comprehensive Handbook; Springer: New York, 1980.
[25]
Frijda, N. H. The Emotions; Cambridge University Press: Cambridge, 1986.
[26]
Yang, Y. B.; Yang, X. D.; Tan, Y. N.; Yuan, Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 2017, 10, 1560-1583.
[27]
Zhang, F. J.; Zang, Y. P.; Huang, D. Z.; Di, C. A.; Zhu, D. B. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 2015, 6, 8356.
[28]
Rogalski, A. Infrared detectors: An overview. Infrared Phys. Technol. 2002, 43, 187-210.
[29]
Emaminejad, S.; Gao, W.; Wu, E.; Davies, Z. A.; Yin Yin Nyein, H.; Challa, S.; Ryan, S. P.; Fahad, H. M.; Chen, K.; Shahpar, Z. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl. Acad. Sci. USA 2017, 114, 4625-4630.
[30]
Liu, C. B.; Zhao, Y.; Cai, X.; Xie, Y.; Wang, T. Y.; Cheng, D. L.; Li, L. Z.; Li, R. F.; Deng, Y. P.; Ding, H. et al. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsyst. Nanoeng. 2020, 6, 64.
[31]
Levine, M.; Conry-Cantilena, C.; Wang, Y.; Welch, R. W.; Washko, P. W.; Dhariwal, K. R.; Park, J. B.; Lazarev, A.; Graumlich, J. F.; King, J. et al. Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc. Natl. Acad. Sci. USA 1996, 93, 3704-3709.
[32]
Zhang, X.; Cao, Y.; Yu, S.; Yang, F. C.; Xi, P. X. An electrochemical biosensor for ascorbic acid based on carbon-supported PDN inanoparticles. Biosens. Bioelectron. 2013, 44, 183-190.
[33]
Dhara, K.; Debiprosad, R. M. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection. Anal. Biochem. 2019, 586, 113415.
[34]
Bernstein, R. E. Excretion of vitamin C in sweat. Nature 1937, 140, 684-685.
[35]
Wang, Y. C.; Zhu, H. L.; Yang, H. R.; Argall, A. D.; Luan, L.; Xie, C.; Guo, L. Nano functional neural interfaces. Nano Res. 2018, 11, 5065-5106.
Video
12274_2020_3254_MOESM2_ESM.mp4
12274_2020_3254_MOESM3_ESM.mp4
File
12274_2020_3254_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 September 2020
Revised: 19 November 2020
Accepted: 21 November 2020
Published: 23 December 2020
Issue date: September 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

Funding: the National Natural Science Foundation of China (NSFC) (No. 61874064); Beijing Institute of Technology Research Fund Program for Young Scholars; Beijing Innovation Center for Future Chips, Tsinghua University; Beijing National Research Center for Information Science and Technology (No. BNR2019ZS01005). The authors acknowledge characterization work supported by Beijing Institute of Technology Analysis & Testing Center. We also thank Nianzhen Du for the image design.

Return