Journal Home > Volume 14 , Issue 6

van der Waals (vdW) heterostructures based on two-dimensional (2D) materials holding design-by-demand features offer astonishing opportunities to construct novel electronics and optoelectronics devices due to the vdW force interaction between their stacked components. At the atomically thin confinement, vdW heterostructure not only exhibits unprecedented properties as an entire counterpart, but also provides unique platforms to manipulate the vdW interfacial behaviors. Therefore, developing characterization techniques to comprehensively understand the coupling effect on structure-property-performance relationship of vdW heterostructures is crucial for fundamental science and practical applications. Here, we focus on the most widely studied 2D semiconductor transition metal dichalcogenides (TMDCs) and systematically review significant advances in characterizing the material and interfacial coupling effect of the related vdW heterostructures. Specially, we will discuss microscopy techniques for unveiling the structure-property relationship of vdW heterostructures and optical spectroscopy measurements for analyzing vdW interfacial coupling effect. Finally, we address some promising strategies to optimize characterization technologies for resolving vdW heterostructures, including coupling multiple characterization technologies, improving temporal and spatial resolution, developing fast, efficient, and non-destructive techniques and introducing artificial intelligence.


menu
Abstract
Full text
Outline
About this article

The coupling effect characterization for van der Waals structures based on transition metal dichalcogenides

Show Author's information Baishan Liu1,2,§Junli Du1,2,§Huihui Yu1,2Mengyu Hong1,2Zhuo Kang1,2Zheng Zhang1,2( )Yue Zhang1,2( )
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

§ Baishan Liu and Junli Du contributed equally to this work.

Abstract

van der Waals (vdW) heterostructures based on two-dimensional (2D) materials holding design-by-demand features offer astonishing opportunities to construct novel electronics and optoelectronics devices due to the vdW force interaction between their stacked components. At the atomically thin confinement, vdW heterostructure not only exhibits unprecedented properties as an entire counterpart, but also provides unique platforms to manipulate the vdW interfacial behaviors. Therefore, developing characterization techniques to comprehensively understand the coupling effect on structure-property-performance relationship of vdW heterostructures is crucial for fundamental science and practical applications. Here, we focus on the most widely studied 2D semiconductor transition metal dichalcogenides (TMDCs) and systematically review significant advances in characterizing the material and interfacial coupling effect of the related vdW heterostructures. Specially, we will discuss microscopy techniques for unveiling the structure-property relationship of vdW heterostructures and optical spectroscopy measurements for analyzing vdW interfacial coupling effect. Finally, we address some promising strategies to optimize characterization technologies for resolving vdW heterostructures, including coupling multiple characterization technologies, improving temporal and spatial resolution, developing fast, efficient, and non-destructive techniques and introducing artificial intelligence.

Keywords: van der Waals heterostructures, transition metal dichalcogenide materials, structure-property characterization, interfacial behaviors, microscopy techniques, optical spectroscopy techniques.

References(118)

[1]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[2]
L. Wang,; X. Z. Xu,; L. N. Zhang,; R. X. Qiao,; M. H. Wu,; Z. C. Wang,; S. Zhang,; J. Liang,; Z. H. Zhang,; Z. B. Zhang, et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 2019, 570, 91-95.
[3]
K. F. Mak,; C. Lee,; J. Hone,; J. Shan,; T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[4]
L. K. Li,; Y. J. Yu,; G. J. Ye,; Q. Q. Ge,; X. D. Ou,; H. Wu,; D. L. Feng,; X. H. Chen,; Y. B. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[5]
X. X. Xi,; Z. F. Wang,; W. W. Zhao,; J. H. Park,; K. T. Law,; H. Berger,; L. Forró,; J. Shan,; K. F. Mak, Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2016, 12, 139-143.
[6]
Q. H. Wang,; K. Kalantar-Zadeh,; A. Kis,; J. N. Coleman,; M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[7]
E. Kahn,; M. Z. Liu,; T. Y. Zhang,; H. Liu,; K. Fujisawa,; G. Bepete,; P. M. Ajayan,; M. Terrones, Functional hetero-interfaces in atomically thin materials. Mater. Today 2020, 37, 74-92.
[8]
K. S. Novoselov,; A. Mishchenko,; A. Carvalho,; A. H. Castro Neto, 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
[9]
Y. Liu,; N. O. Weiss,; X. D. Duan,; H. C. Cheng,; Y. Huang,; X. F. Duan, van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.
[10]
Y. Liu,; Y. Huang,; X. F. Duan, van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323-333.
[11]
The interface is still the device. Nat. Mater. 2012, 11, 91.
[12]
C. R. Dean,; L. Wang,; P. Maher,; C. Forsythe,; F. Ghahari,; Y. Gao,; J. Katoch,; M. Ishigami,; P. Moon,; M. Koshino, et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 2013, 497, 598-602.
[13]
B. Hunt,; J. Sanchez-Yamagishi,; A. F. Young,; M. Yankowitz,; B. J. LeRoy,; K. Watanabe,; T. Taniguchi,; P. Moon,; M. Koshino,; P. Jarillo-Herrero, et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340, 1427-1430.
[14]
Y. Cao,; V. Fatemi,; A. Demir,; S. A. Fang,; S. L. Tomarken,; J. Y. Luo,; J. D. Sanchez-Yamagishi,; K. Watanabe,; T. Taniguchi,; E. Kaxiras, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80-84.
[15]
Y. Cao,; V. Fatemi,; S. A. Fang,; K. Watanabe,; T. Taniguchi,; E. Kaxiras,; P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43-50.
[16]
A. Y. Gao,; J. W. Lai,; Y. J. Wang,; Z. Zhu,; J. W. Zeng,; G. L. Yu,; N. Z. Wang,; W. C. Chen,; T. J. Cao,; W. D. Hu, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217-222.
[17]
F. Wu,; Q. Li,; P. Wang,; H. Xia,; Z. Wang,; Y. Wang,; M. Luo,; L. Chen,; F. S. Chen,; J. S. Miao, et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat. Commun. 2019, 10, 4663.
[18]
J. Bullock,; M. Amani,; J. Cho,; Y. Z. Chen,; G. H. Ahn,; V. Adinolfi,; V. R. Shrestha,; Y. Gao,; K. B. Crozier,; Y. L. Chueh, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid- wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics. 2018, 12, 601-607.
[19]
C. S. Liu,; X. Yan,; X. F. Song,; S. J. Ding,; D. W. Zhang,; P. Zhou, A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404-410.
[20]
X. L. Liu,; M. C. Hersam, Interface characterization and control of 2D materials and heterostructures. Adv. Mater. 2018, 30, 1801586.
[21]
M. Cattelan,; N. A. Fox, A perspective on the application of spatially resolved ARPES for 2D materials. Nanomaterials 2018, 8, 284.
[22]
S. Dal Conte,; C. Trovatello,; C. Gadermaier,; G. Cerullo, Ultrafast photophysics of 2D semiconductors and related heterostructures. Trends Chem. 2020, 2, 28-42.
[23]
P. Ajayan,; P. Kim,; K. Banerjee, Two-dimensional van der Waals materials. Phys. Today 2016, 69, 38-44.
[24]
S. Liu,; Q. L. Liao,; Z. Zhang,; X. K. Zhang,; S. N. Lu,; L. X. Zhou,; M. Y. Hong,; Z. Kang,; Y. Zhang, Strain modulation on graphene/ ZnO nanowire mixed-dimensional van der Waals heterostructure for high-performance photosensor. Nano Res. 2017, 10, 3476-3485.
[25]
J. Bullock,; M. Amani,; J. Cho,; Y.-Z. Chen.; G. H. Ahn,; V. Adinolfi,; V. R. Shrestha,; Y. Gao,; K. B. Crozier,; Y.-L. Chueh, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid- wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 2018, 12, 601-607.
[26]
H. L. Wu,; Z. Kang,; Z. H. Zhang,; H. N. Si,; S. C. Zhang,; Z. Zhang,; Q. L. Liao,; Y. Zhang, Ligand engineering for improved all-inorganic perovskite quantum dot-MoS2 monolayer mixed dimensional van der Waals phototransistor. Small Methods 2019, 3, 1900117.
[27]
P. Lin,; J. K. Yang, Tunable WSe2/WS2 van der Waals heterojunction for self-powered photodetector and photovoltaics. J. Alloys Compd. 2020, 842, 155890.
[28]
A. A. Puretzky,; L. B. Liang,; X. F. Li,; K. Xiao,; K. Wang,; M. Mahjouri-Samani,; L. Basile,; J. C. Idrobo,; B. G. Sumpter,; V. Meunier, Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano 2015, 9, 6333-6342.
[29]
X. Lu,; M. I. B. Utama,; J. H. Lin,; X. Luo,; Y. Y. Zhao,; J. Zhang,; S. T. Pantelides,; W. Zhou,; S. Y. Quek,; Q. H. Xiong, Rapid and nondestructive identification of polytypism and stacking sequences in few-layer molybdenum diselenide by Raman spectroscopy. Adv. Mater. 2015, 27, 4502-4508.
[30]
J. X. Yan,; J. Xia,; X. L. Wang,; L. Liu,; J. L. Kuo,; B. K. Tay,; S. S. Chen,; W. Zhou,; Z. Liu,; Z. X. Shen, Stacking-dependent interlayer coupling in trilayer MoS2 with broken inversion symmetry. Nano Lett. 2015, 15, 8155-8161.
[31]
K. H. Liu,; L. M. Zhang,; T. Cao,; C. H. Jin,; D. A. Qiu,; Q. Zhou,; A. Zettl,; P. D. Yang,; S. G. Louie,; F. Wang, Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.
[32]
J. Xia,; J. X. Yan,; Z. X. Shen, Transition metal dichalcogenides: Structural, optical and electronic property tuning via thickness and stacking. FlatChem 2017, 4, 1-19.
[33]
H. L. Guo,; X. Zhang,; G. Lu, Shedding light on moiré excitons: A first-principles perspective. Sci. Adv. 2020, 6, eabc5638.
[34]
C. H. Jin,; E. C. Regan,; A. M. Yan,; M. I. B. Utama,; D. Q. Wang,; S. H. Zhao,; Y. Qin,; S. J. Yang,; Z. R. Zheng,; S. Y. Shi, et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76-80.
[35]
K. Tran,; G. Moody,; F. C. Wu,; X. B. Lu,; J. Choi,; K. Kim,; A. Rai,; D. A. Sanchez,; J. M. Quan,; A. Singh, et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71-75.
[36]
K. L. Seyler,; P. Rivera,; H. Y. Yu,; N. P. Wilson,; E. L. Ray,; D. G. Mandrus,; J. Q. Yan,; W. Yao,; X. D. Xu, Signatures of moiré- trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66-70.
[37]
C. H. Jin,; E. Y. Ma,; O. Karni,; E. C. Regan,; F. Wang,; T. F. Heinz, Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 2018, 13, 994-1003.
[38]
S. D. Fan,; S. J. Yun,; W. J. Yu,; Y. H. Lee, Tailoring quantum tunneling in a vanadium-doped WSe2/SnSe2 heterostructure. Adv. Sci. 2020, 7, 1902751.
[39]
F. Withers,; O. Del Pozo-Zamudio,; A. Mishchenko,; A. P. Rooney,; A. Gholinia,; K. Watanabe,; T. Taniguchi,; S. J. Haigh,; A. K. Geim,; A. I. Tartakovskii, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301-306.
[40]
R. Q. Cheng,; F. Wang,; L. Yin,; Z. X. Wang; Y. Wen,; T. A. Shifa,; J. He, High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron. 2018, 1, 356-361.
[41]
J. J. Linghu,; T. Yang,; Y. Z. Luo,; M. Yang,; J. Zhou,; L. Shen,; Y. P. Feng, High-throughput computational screening of vertical 2D van der Waals heterostructures for high-efficiency excitonic solar cells. ACS Appl. Mater. Interfaces 2018, 10, 32142-32150.
[42]
V. O. Özçelik,; J. G. Azadani,; C. Yang,; S. J. Koester,; T. Low, Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 2016, 94, 035125.
[43]
A. M. Ionescu,; H. Riel, Tunnel field-effect transistors as energy- efficient electronic switches. Nature 2011, 479, 329-337.
[44]
C. X. Zhang,; C. Gong,; Y. F. Nie,; K. A. Min,; C. P. Liang,; Y. J. Oh,; H. J. Zhang,; W. H. Wang,; S. Hong,; L. Colombo, Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in van der Waals heterostructures. 2D Mater. 2016, 4, 015026.
[45]
D. S. Schulman,; A. J. Arnold,; S. Das, Contact engineering for 2D materials and devices. Chem. Soc. Rev. 2018, 47, 3037-3058.
[46]
X. D. Duan,; C. Wang,; A. L. Pan,; R. Q. Yu,; X. F. Duan, Two- dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859-8876.
[47]
R. Frisenda,; E. Navarro-Moratalla,; P. Gant,; D. Pérez De Lara,; P. Jarillo-Herrero,; R. V. Gorbachev,; A. Castellanos-Gomez, Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53-68.
[48]
Z. Zhang,; P. Lin,; Q. L. Liao,; Z. Kang,; H. N. Si,; Y. Zhang, Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics. Adv. Mater. 2019, 31, 1806411.
[49]
Z. Zhang,; Q. L. Liao,; Y. H. Yu,; X. D. Wang,; Y. Zhang, Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy 2014, 9, 237-244.
[50]
H. L. Wu,; H. N. Si,; Z. H. Zhang,; Z. Kang,; P. W. Wu,; L. X. Zhou,; S. C. Zhang,; Z. Zhang,; Q. L. Liao,; Y. Zhang, All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv. Sci. 2018, 5, 1801219.
[51]
Y. Jiang,; Z. Chen,; Y. M. Han,; P. Deb,; H. Gao,; S. E. Xie,; P. Purohit,; M. W. Tate,; J. Park,; S. M. Gruner, Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 2018, 559, 343-349.
[52]
Y. M. Han,; K. Nguyen,; M. Cao,; P. Cueva,; S. E. Xie,; M. W. Tate,; P. Purohit,; S. M. Gruner,; J. Park,; D. A. Muller, Strain mapping of two-dimensional heterostructures with subpicometer precision. Nano Lett. 2018, 18, 3746-3751.
[53]
T. Zhang,; B. Jiang,; Z. Xu,; R. G. Mendes,; Y. Xiao,; L. Chen,; L. W. Fang,; T. Gemming,; S. L. Chen,; M. H. Rümmeli, et al. Twinned growth behaviour of two-dimensional materials. Nat. Commun. 2016, 7, 13911.
[54]
C. D. Zhang,; C. P. Chuu,; X. B. Ren,; M. Y. Li,; L. J. Li,; C. H. Jin,; M. Y. Chou,; C. K. Shih, Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.
[55]
Z. Y. Lin,; A. X. Yin,; J. Mao,; Y. Xia,; N. Kempf,; Q. Y. He,; Y. L. Wang,; C. Y. Chen,; Y. L. Zhang,; V. Ozolins, et al. Scalable solution- phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template. Sci. Adv. 2016, 2, e1600993.
[56]
J. Guo,; L. Y. Wang,; Y. Liu,; Z. P. Zhao,; E. B. Zhu,; Z. Y. Lin,; P. Q. Wang,; C. C. Jia,; S. X. Yang,; S. J. Lee, et al. Highly reliable low-voltage memristive switching and artificial synapse enabled by van der Waals integration. Matter 2020, 2, 965-976.
[57]
F. T. Huang,; S. Joon Lim,; S. Singh,; J. Kim,; L. Y. Zhang,; J. W. Kim,; M. W. Chu,; K. M. Rabe,; D. Vanderbilt,; S. W. Cheong, Polar and phase domain walls with conducting interfacial states in a Weyl semimetal MoTe2. Nat. Commun. 2019, 10, 4211.
[58]
F. Zhang,; H. R. Zhang,; S. Krylyuk,; C. A. Milligan,; Y. Q. Zhu,; D. Y. Zemlyanov,; L. A. Bendersky,; B. P. Burton,; A. V. Davydov,; J. Appenzeller, Electric-field induced structural transition in vertical MoTe2-and Mo1-xWxTe2-based resistive memories. Nat. Mater. 2019, 18, 55-61.
[59]
C. J. Chen, Introduction to Scanning Tunneling Microscopy; Oxford University Press: New York, 1993.
[60]
J. E. Hoffman, Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors. Rep. Prog. Phys. 2011, 74, 124513.
[61]
J. M. Xue,; J. Sanchez-Yamagishi,; D. Bulmash,; P. Jacquod,; A. Deshpande,; K. Watanabe,; T. Taniguchi,; P. Jarillo-Herrero,; B. J. LeRoy, Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 2011, 10, 282-285.
[62]
H. M. Hill,; A. F. Rigosi,; K. T. Rim,; G. W. Flynn,; T. F. Heinz, Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett. 2016, 16, 4831-4837.
[63]
C. D. Zhang,; M. Y. Li,; J. Tersoff,; Y. M. Han,; Y. S. Su,; L. J. Li,; D. A. Muller,; C. K. Shih, Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 2018, 13, 152-158.
[64]
Y. Pan,; S. Fölsch,; Y. F. Nie,; D. Waters,; Y. C. Lin,; B. Jariwala,; K. H. Zhang,; K. Cho,; J. A. Robinson,; R. M. Feenstra, Quantum- confined electronic states arising from the moiré pattern of MoS2- WSe2 heterobilayers. Nano Lett. 2018, 18, 1849-1855.
[65]
H. Zhang,; J. X. Huang,; Y. W. Wang,; R. Liu,; X. L. Huai,; J. J. Jiang,; C. Anfuso, Atomic force microscopy for two-dimensional materials: A tutorial review. Opt. Commun. 2018, 406, 3-17.
[66]
G. Binnig,; C. F. Quate,; C. Gerber, Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930-933.
[67]
T. F. Yang,; B. Y. Zheng,; Z. Wang,; T. Xu,; C. Pan,; J. Zou,; X. H. Zhang,; Z. Y. Qi,; H. J. Liu,; Y. X. Feng, et al. van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. 2017, 8, 1906.
[68]
L. Gao,; Q. L. Liao,; X. K. Zhang,; X. Z. Liu,; L. Gu,; B. S. Liu,; J. L. Du,; Y. Ou,; J. K. Xiao,; Z. Kang, Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 2020, 32, 1906646.
[69]
S. Barja,; S. Refaely-Abramson,; B. Schuler,; D. Y. Qiu,; A. Pulkin,; S. Wickenburg,; H. Ryu,; M. M. Ugeda,; C. Kastl,; C. Chen, et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 2019, 10, 3382.
[70]
S. Barja,; S. Wickenburg,; Z. F. Liu,; Y. Zhang,; H. Ryu,; M. M. Ugeda,; Z. Hussain,; Z. X. Shen,; S. K. Mo,; E. Wong, et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 2016, 12, 751-756.
[71]
Y. Zhang,; X. Q. Yan,; Y. Yang,; Y. H. Huang,; Q. L. Liao,; J. J. Qi, Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647-4655.
[72]
S. Moon,; M. Y. Kang,; J. H. Kim,; K. R. Park,; C. Shin, Creation of optimal frequency for electrostatic force microscopy using direct digital synthesizer. Appl. Sci. 2017, 7, 704.
[73]
J. L. Du,; Q. L. Liao,; M. Y. Hong,; B. S. Liu,; X. K. Zhang,; H. H. Yu,; J. K. Xiao,; L. Gao,; F. F. Gao,; Z. Kang, et al. Piezotronic effect on interfacial charge modulation in mixed-dimensional van der Waals heterostructure for ultrasensitive flexible photodetectors. Nano Energy 2019, 58, 85-93.
[74]
Z. Z. Wang,; Y. S. Gu,; J. J. Qi,; S. N. Lu,; P. F. Li,; P. Lin,; Y. Zhang, Size dependence and UV irradiation tuning of the surface potential in single conical ZnO nanowires. RSC Adv. 2015, 5, 42075-42080.
[75]
J. J. Qi,; Y. W. Lan,; A. Z. Stieg,; J. H. Chen,; Y. L. Zhong,; L. J. Li,; C. D. Chen,; Y. Zhang,; K. L. Wang, Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun. 2015, 6, 7430.
[76]
X. K. Zhang,; Q. L. Liao,; Z. Kang,; B. S. Liu,; Y. Ou,; J. L. Du,; J. K. Xiao,; L. Gao,; H. Y. Shan,; Y. Luo, et al. Self-healing originated van der Waals homojunctions with strong interlayer coupling for high-performance photodiodes. ACS Nano 2019, 13, 3280-3291.
[77]
X. K. Zhang,; Q. L. Liao,; S. Liu,; Z. Kang,; Z. Zhang,; J. L. Du,; F. Li,; S. H. Zhang,; J. K. Xiao,; B. S. Liu, et al. Poly(4- styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun. 2017, 8, 15881.
[78]
M. R. Rosenberger,; H. J. Chuang,; M. Phillips,; V. P. Oleshko,; K. M. McCreary,; S. V. Sivaram,; C. S. Hellberg,; B. T. Jonker, Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 2020, 14, 4550-4558.
[79]
Y. Son,; M. Y. Li,; C. C. Cheng,; K. H. Wei,; P. W. Liu,; Q. H. Wang,; L. J. Li,; M. S. Strano, Observation of switchable photoresponse of a monolayer WSe2-MoS2 lateral heterostructure via photocurrent spectral atomic force microscopic imaging. Nano Lett. 2016, 16, 3571-3577.
[80]
S. S. Zhang,; N. Zhang,; Y. Zhao,; T. Cheng,; X. B. Li,; R. Feng,; H. Xu,; Z. R. Liu,; J. Zhang,; L. M. Tong, Spotting the differences in two-dimensional materials—The Raman scattering perspective. Chem. Soc. Rev. 2018, 47, 3217-3240.
[81]
X. Lu,; X. Luo,; J. Zhang,; S. Y. Quek,; Q. H. Xiong, Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Res. 2016, 9, 3559-3597.
[82]
X. Zhang,; X. F. Qiao,; W. Shi,; J. B. Wu,; D. S. Jiang,; P. H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757-2785.
[83]
B. S. Liu,; Q. L. Liao,; X. K. Zhang,; J. L. Du,; Y. Ou,; J. K. Xiao,; Z. Kang,; Z. Zhang,; Y. Zhang, Strain-engineered van der Waals interfaces of mixed-dimensional heterostructure arrays. ACS Nano 2019, 13, 9057-9066.
[84]
G. H. Ahn,; M. Amani,; H. Rasool,; D. H. Lien,; J. P. Mastandrea,; J. W. Ager III,; M. Dubey,; D. C. Chrzan,; A. M. Minor,; A. Javey, Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608.
[85]
K. L. He,; C. Poole,; K. F. Mak,; J. Shan, Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931-2936.
[86]
L. B. Liang,; J. Zhang,; B. G. Sumpter,; Q. H. Tan,; P. H. Tan,; V. Meunier, Low-frequency shear and layer-breathing modes in Raman scattering of two-dimensional materials. ACS Nano 2017, 11, 11777-11802.
[87]
M. L. Lin,; Q. H. Tan,; J. B. Wu,; X. S. Chen,; J. H. Wang,; Y. H. Pan,; X. Zhang,; X. Cong,; J. Zhang,; W. Ji, et al. Moiré phonons in twisted bilayer MoS2. ACS Nano 2018, 12, 8770-8780.
[88]
J. Zhang,; J. H. Wang,; P. Chen,; Y. Sun,; S. Wu,; Z. Y. Jia,; X. B. Lu,; H. Yu,; W. Chen,; J. Q. Zhu, et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 2016, 28, 1950-1956.
[89]
C. H. Lui,; Z. P. Ye,; C. Ji,; K. C. Chiu,; C. T. Chou,; T. I. Andersen,; C. Means-Shively,; H. Anderson,; J. M. Wu,; T. Kidd, et al. Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 2015, 91, 165403.
[90]
X. P. Hong,; J. Kim,; S. F. Shi,; Y. Zhang,; C. H. Jin,; Y. H. Sun,; S. Tongay,; J. Q. Wu,; Y. F. Zhang,; F. Wang, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682-686.
[91]
J. Kunstmann,; F. Mooshammer,; P. Nagler,; A. Chaves,; F. Stein,; N. Paradiso,; G. Plechinger,; C. Strunk,; C. Schüller,; G. Seifert, et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 2018, 14, 801-805.
[92]
X. Liu,; J. J. Pei,; Z. H. Hu,; W. J. Zhao,; S. Liu,; M. R. Amara,; K. Watanabe,; T. Taniguchi,; H. Zhang,; Q. H. Xiong, Manipulating charge and energy transfer between 2D atomic layers via heterostructure engineering. Nano Lett. 2020, 20, 5359-5366.
[93]
D. Kozawa,; A. Carvalho,; I. Verzhbitskiy,; F. Giustiniano,; Y. Miyauchi,; S. Mouri,; A. H. Castro Neto,; K. Matsuda,; G. Eda, Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures. Nano Lett. 2016, 16, 4087-4093.
[94]
W. S. Xu,; D. Kozawa,; Y. Liu,; Y. W. Sheng,; K. Wei,; V. B. Koman,; S. S. Wang,; X. C. Wang,; T. Jiang,; M. S. Strano, et al. Determining the optimized interlayer separation distance in vertical stacked 2D WS2:HBN:MoS2 heterostructures for exciton energy transfer. Small 2018, 14, 1703727.
[95]
H. Fang,; C. Battaglia,; C. Carraro,; S. Nemsak,; B. Ozdol,; J. S. Kang,; H. A. Bechtel,; S. B. Desai,; F. Kronast,; A. A. Unal, et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198-6202.
[96]
K. N. Zhang,; T. N. Zhang,; G. H. Cheng,; T. X. Li,; S. X. Wang,; W. Wei,; X. H. Zhou,; W. W. Yu,; Y. Sun,; P. Wang, et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 2016, 10, 3852-3858.
[97]
G. C. Wang,; L. Li,; W. H. Fan,; R. Y. Wang,; S. S. Zhou,; J. T. Lü,; L. Gan,; T. Y. Zhai, Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance. Adv. Funct. Mater. 2018, 28, 1800339.
[98]
A. Varghese,; D. Saha,; K. Thakar,; V. Jindal,; S. Ghosh,; N. V. Medhekar,; S. Ghosh,; S. Lodha, Near-direct bandgap WSe2/ReS2 type-II pn heterojunction for enhanced ultrafast photodetection and high- performance photovoltaics. Nano Lett. 2020, 20, 1707-1717.
[99]
P. Rivera,; J. R. Schaibley,; A. M. Jones,; J. S. Ross,; S. F. Wu,; G. Aivazian,; P. Klement,; K. Seyler,; G. Clark,; N. J. Ghimire, et al. Observation of long-lived interlayer excitons in monolayer MoSe2- WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.
[100]
M. Baranowski,; A. Surrente,; L. Klopotowski,; J. M. Urban,; N. Zhang,; D. K. Maude,; K. Wiwatowski,; S. Mackowski,; Y. C. Kung,; D. Dumcenco, et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der waals heterostructure. Nano Lett. 2017, 17, 6360-6365.
[101]
N. Ubrig,; E. Ponomarev,; J. Zultak,; D. Domaretskiy,; V. Zólyomi,; D. Terry,; J. Howarth,; I. Gutiérrez-Lezama,; A. Zhukov,; Z. R. Kudrynskyi, et al. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat. Mater. 2020, 19, 299-304.
[102]
J. Choi,; W. T. Hsu,; L. S. Lu,; L. Y. Sun,; H. Y. Cheng,; M. H. Lee,; J. M. Quan,; K. Tran,; C. Y. Wang,; M. Staab, et al. Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv. 2020, 6, eaba8866.
[103]
F. Ceballos,; M. Z. Bellus,; H. Y. Chiu,; H. Zhao, Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. ACS Nano 2014, 8, 12717-12724.
[104]
H. Heo,; J. H. Sung,; S. Cha,; B. G. Jang,; J. Y. Kim,; G. Jin,; D. Lee,; J. H. Ahn,; M. J. Lee,; J. H. Shim, et al. Interlayer orientation- dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 2015, 6, 7372.
[105]
K. Wang,; B. Huang,; M. K. Tian,; F. Ceballos,; M. W. Lin,; M. Mahjouri-Samani,; A. Boulesbaa,; A. A. Puretzky,; C. M. Rouleau,; M. Yoon, et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 2016, 10, 6612-6622.
[106]
H. M. Zhu,; J. Wang,; Z. Z. Gong,; Y. D. Kim,; J. Hone,; X. Y. Zhu, Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett. 2017, 17, 3591-3598.
[107]
Z. H. Ji,; H. Hong,; J. Zhang,; Q. Zhang,; W. Huang,; T. Cao,; R. X. Qiao,; C. Liu,; J. Liang,; C. H. Jin, et al. Robust Stacking- independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano 2017, 11, 12020-12026.
[108]
H. L. Chen,; X. W. Wen,; J. Zhang,; T. M. Wu,; Y. J. Gong,; X. Zhang,; J. T. Yuan,; C. Y. Yi,; J. Lou,; P. M. Ajayan, et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512.
[109]
F. Ceballos,; M. G. Ju,; S. D. Lane,; X. C. Zeng,; H. Zhao, Highly efficient and anomalous charge transfer in van der Waals trilayer semiconductors. Nano Lett. 2017, 17, 1623-1628.
[110]
S. W. Han,; G. B. Cha,; E. Frantzeskakis,; I. Razado-Colambo,; J. Avila,; Y. S. Park,; D. Kim,; J. Hwang,; J. S. Kang,; S. Ryu, et al. Band-gap expansion in the surface-localized electronic structure of MoS2(0002). Phys. Rev. B 2012, 86, 115105.
[111]
H. Coy Diaz,; J. Avila,; C. Y. Chen,; R. Addou,; M. C. Asensio,; M. Batzill, Direct observation of interlayer hybridization and dirac relativistic carriers in graphene/MoS2 van der Waals heterostructures. Nano Lett. 2015, 15, 1135-1140.
[112]
N. R. Wilson,; P. V. Nguyen,; K. Seyler,; P. Rivera,; A. J. Marsden,; Z. P. L. Laker,; G. C. Constantinescu,; V. Kandyba,; A. Barinov,; N. D. M. Hine, et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 2017, 3, e1601832.
[113]
E. A. Pozzi,; G. Goubert,; N. Chiang,; N. Jiang,; C. T. Chapman,; M. O. McAnally,; A. I. Henry,; T. Seideman,; G. C. Schatz,; M. C. Hersam, et al. Ultrahigh-vacuum tip-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 4961-4982.
[114]
Y. Luo,; R. Engelke,; M. Mattheakis,; M. Tamagnone,; S. Carr,; K. Watanabe,; T. Taniguchi,; E. Kaxiras,; P. Kim,; W. L. Wilson, In situ nanoscale imaging of moire superlattices in twisted van der Waals heterostructures. Nat. Commun. 2020, 11, 4209.
[115]
L. Wang,; X. G. Xu, Scattering-type scanning near-field optical microscopy with reconstruction of vertical interaction. Nat. Commun. 2015, 6, 8973.
[116]
M. A. Ziatdinov,; S. Fujii,; M. Kiguchi,; T. Enoki,; S. Jesse,; S. V. Kalinin, Data mining graphene: Correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects. Nanotechnology 2016, 27, 495703.
[117]
S. V. Kalinin,; E. Strelcov,; A. Belianinov,; S. Somnath,; R. K. Vasudevan,; E. J. Lingerfelt,; R. K. Archibald,; C. M. Chen,; R. Proksch,; N. Laanait, et al. Big, deep, and smart data in scanning probe microscopy. ACS Nano 2016, 10, 9068-9086.
[118]
M. Ziatdinov,; O. Dyck,; A. Maksov,; X. F. Li,; X. H. Sang,; K. Xiao,; R. R. Unocic,; R. Vasudevan,; S. Jesse,; S. V. Kalinin, Deep learning of atomically resolved scanning transmission electron microscopy images: Chemical identification and tracking local transformations. ACS Nano 2017, 11, 12742-12752.
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 September 2020
Revised: 16 November 2020
Accepted: 19 November 2020
Published: 08 December 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51991340, 51991342, 51527802, 51972022, 51722203, and 51672026), the Overseas Expertise Introduction Projects for Discipline Innovation (No. B14003), the National Key Research and Development Program of China (No. 2016YFA0202701 and 2018YFA0703503), the Natural Science Foundation of Beijing Municipality (No. Z180011), and the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-18-004A2 and FRF-TP-18-001C1).

Return