Journal Home > Volume 14 , Issue 7

In this study, we investigated the in vivo behaviors of chiral cobalt oxide nanoparticles (Co3O4 NPs) stabilized with D- or L-cysteine (denoted D- or L-NPs, respectively), as representative chiral metal oxide NPs. Chiral Co3O4 NPs exerted no observable cytotoxicity within the tested dose range. Both D-NPs and L-NPs were internalized by dendritic cells through caveola-dependent endocytosis, and L-NPs entered the cells faster than D-NPs. Significantly, a metabolic analysis indicated that chiral L-NPs had the same effect on the level of bile acids in the liver as D-NPs, which is attributed to the almost equal amount of farnesoid X receptor (FXR) induced by the chiral NPs. This study suggests that low chiroptical activity nanomaterials would not affect the metabolism and kinetics under physiological conditions even if there is some difference in their transport.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Metabolic profile of chiral cobalt oxide nanoparticles in vitro and in vivo

Show Author's information Si Li1,2Liwei Xu1,2Meiru Lu1,2Maozhong Sun1,2Liguang Xu1,2Changlong Hao1,2( )Xiaoling Wu1,2( )Chuanlai Xu1,2( )Hua Kuang1,2
International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi 214122, China
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China

Abstract

In this study, we investigated the in vivo behaviors of chiral cobalt oxide nanoparticles (Co3O4 NPs) stabilized with D- or L-cysteine (denoted D- or L-NPs, respectively), as representative chiral metal oxide NPs. Chiral Co3O4 NPs exerted no observable cytotoxicity within the tested dose range. Both D-NPs and L-NPs were internalized by dendritic cells through caveola-dependent endocytosis, and L-NPs entered the cells faster than D-NPs. Significantly, a metabolic analysis indicated that chiral L-NPs had the same effect on the level of bile acids in the liver as D-NPs, which is attributed to the almost equal amount of farnesoid X receptor (FXR) induced by the chiral NPs. This study suggests that low chiroptical activity nanomaterials would not affect the metabolism and kinetics under physiological conditions even if there is some difference in their transport.

Keywords: metabolism, chiral metal oxide, endocytosis, bile acid

References(44)

[1]
Cecconello, A.; Besteiro, L. V.; Govorov, A. O.; Willner, I. Chiroplasmonic DNA-based nanostructures. Nat. Rev. Mater. 2017, 2, 17039.
[2]
Chen, Z.; Wang, Q.; Wu, X.; Li, Z.; Jiang, Y. B. Optical chirality sensing using macrocycles, synthetic and supramolecular oligomers/polymers, and nanoparticle based sensors. Chem. Soc. Rev. 2015, 44, 4249-4263.
[3]
Ma, W.; Hao, C. L.; Sun, M. Z.; Xu, L. G.; Xu, C. L.; Kuang, H. Tuning of chiral construction, structural diversity, scale transformation and chiroptical applications. Mater. Horiz. 2018, 5, 141-161.
[4]
Wang, Y.; Xu, J.; Wang, Y. W.; Chen, H. Y. Emerging chirality in nanoscience. Chem. Soc. Rev. 2013, 42, 2930-2962.
[5]
Ge, P.; Zhang, C. Y.; Hou, H. S.; Wu, B. K.; Zhou, L.; Li, S. J.; Wu, T. J.; Hu, J. G.; Mai, L. Q.; Ji, X. B. Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property. Nano Energy 2018, 48, 617-629.
[6]
Zhang, X.; Yin, J.; Yoon, J. Recent advances in development of chiral fluorescent and colorimetric sensors. Chem. Rev. 2014, 114, 4918-4959.
[7]
Klos, G.; Andersen, A.; Miola, M.; Birkedal, H.; Sutherland, D. S. Oxidation controlled lift-off of 3D chiral plasmonic Au nano-hooks. Nano Res. 2019, 12, 1635-1642.
[8]
Li, Y. W.; Cheng, J. J.; Li, J. G.; Zhu, X.; He, T. C.; Chen, R.; Tang, Z. K. Tunable Chiroptical properties from the plasmonic band to metal-ligand charge transfer band of cysteine-capped molybdenum oxide nanoparticles. Angew. Chem., Int. Ed. 2018, 57, 10236-10240.
[9]
Hao, C. L.; Qu, A. H.; Xu, L. G.; Sun, M. Z.; Zhang, H. Y.; Xu, C. L.; Kuang, H. Chiral molecule-mediated porous CuxO nanoparticle clusters with Antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 2019, 141, 1091-1099.
[10]
Yeom, J.; Santos, U. S.; Chekini, M.; Cha, M.; de Moura, A. F.; Kotov, N. A. Chiromagnetic nanoparticles and gels. Science 2018, 359, 309-314.
[11]
Hao, C. L.; Wu, X. L.; Sun, M. Z.; Zhang, H. Y.; Yuan, A. M.; Xu, L. G.; Xu, C. L.; Kuang, H. Chiral core-shell upconversion nanoparticle@MOF nanoassemblies for quantification and bioimaging of reactive oxygen species in vivo. J. Am. Chem. Soc. 2019, 141, 19373-19378.
[12]
Kuno, J.; Imamura, Y.; Katouda, M.; Tashiro, M.; Kawai, T.; Nakashima, T. Inversion of optical activity in the synthesis of mercury sulfide nanoparticles: Role of ligand coordination. Angew. Chem., Int. Ed. 2018, 57, 12022-12026.
[13]
Li, F.; Li, Y. Y.; Yang, X.; Han, X. X.; Jiao, Y.; Wei, T. T.; Yang, D. Y.; Xu, H. P.; Nie, G. J. Highly fluorescent chiral N-S-doped carbon dots from cysteine: Affecting cellular energy metabolism. Angew. Chem., Int. Ed. 2018, 57, 2377-2382.
[14]
Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid- and peptide- directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360-365.
[15]
Zhang, Q. F.; Hernandez, T.; Smith, K. W.; Jebeli, S. A. H.; Dai, A. X.; Warning, L.; Baiyasi, R.; McCarthy, L. A.; Guo, H.; Chen, D. H. et al. Unraveling the origin of chirality from plasmonic nanoparticle- protein complexes. Science 2019, 365, 1475-1478.
[16]
Ma, W.; Xu, L. G.; de Moura, A. F.; Wu, X. L.; Kuang, H.; Xu, C. L.; Kotov, N. A. Chiral inorganic nanostructures. Chem. Rev. 2017, 117, 8041-8093.
[17]
Wu, X. L.; Xu, L. G.; Liu, L. Q.; Ma, W.; Yin, H. H.; Kuang, H.; Wang, L. B.; Xu, C. L.; Kotov, N. A. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J. Am. Chem. Soc. 2013, 135, 18629-18636.
[18]
Kumar, J.; Eraña, H.; López-Martinez, E.; Claes, N.; Martin, V. F.; Solis, D. M.; Bals, S.; Cortajarena, A. L.; Castilla, J.; Liz-Marzán, L. M. Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc. Natl. Acad. Sci. USA 2018, 115, 3225-3230.
[19]
Li, S.; Xu, L. G.; Ma, W.; Wu, X. L.; Sun, M. Z.; Kuang, H.; Wang, L. B.; Kotov, N. A.; Xu, C. L. Dual-mode ultrasensitive quantification of MicroRNA in living cells by chiroplasmonic nanopyramids self- assembled from gold and upconversion nanoparticles. J. Am. Chem. Soc. 2016, 138, 306-312.
[20]
Hao, C. L.; Xu, L. G.; Kuang, H.; Xu, C. L. Artificial chiral probes and bioapplications. Adv. Mater. 2020, 32, 1802075.
[21]
Li, Y. W.; Miao, Z. W.; Shang, Z. W.; Cai, Y.; Cheng, J. J.; Xu, X. Q. A visible- and NIR-light responsive photothermal therapy agent by chirality-dependent MoO3-x nanoparticles. Adv. Funct. Mater. 2020, 30, 1906311.
[22]
Gao, F. L.; Sun, M. Z.; Ma, W.; Wu, X. L.; Liu, L. Q.; Kuang, H.; Xu, C. L. A singlet oxygen generating agent by chirality-dependent plasmonic shell-satellite nanoassembly. Adv. Mater. 2017, 29, 1606864.
[23]
Sun, M. Z.; Xu, L. G.; Qu, A. H.; Zhao, P.; Hao, T. T.; Ma, W.; Hao, C. L.; Wen, X. D.; Colombari, F. M.; de Moura, A. F. et al. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem. 2018, 10, 821-830.
[24]
Hao, C. L.; Gao, R.; Li, Y.; Xu, L. G.; Sun, M. Z.; Xu, C. L.; Kuang, H. Chiral semiconductor nanoparticles for protein catalysis and profiling. Angew. Chem., Int. Ed. 2019, 58, 7371-7374.
[25]
Yeom, J.; Guimaraes, P. P. G.; Ahn, H. M.; Jung, B. K.; Hu, Q. Y.; McHugh, K.; Mitchell, M. J.; Yun, C. O.; Langer, R.; Jaklenec, A. Chiral supraparticles for controllable nanomedicine. Adv. Mater. 2020, 32, 1903878.
[26]
Poon, W.; Zhang, Y. N.; Ouyang, B.; Kingston, B. R.; Wu, J. L. Y.; Wilhelm, S.; Chan, W. C. W. Elimination pathways of nanoparticles. ACS Nano 2019, 13, 5785-5798.
[27]
Hao, J. L.; Song, G. S.; Liu, T.; Yi, X.; Yang, K.; Cheng, L.; Liu, Z. In vivo long-term biodistribution, excretion, and toxicology of PEGylated transition-metal Dichalcogenides MS2 (M = Mo, W, Ti) Nanosheets. Adv. Sci. 2017, 4, 1600160.
[28]
Su, Y. Y.; Peng, F.; Jiang, Z. Y.; Zhong, Y. L.; Lu, Y. M.; Jiang, X. X.; Huang, Q.; Fan, C. H.; Lee, S. T.; He, Y. In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium- containing quantum dots. Biomaterials 2011, 32, 5855-5862.
[29]
Zhang, Y.; Zhang, Y. J.; Hong, G. S.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G. C.; Liu, Z.; Dai, H. J. et al. Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 2013, 34, 3639-3646.
[30]
Li, Y. Y.; Zhou, Y. L.; Wang, H. Y.; Perrett, S.; Zhao, Y. L.; Tang, Z. Y.; Nie, G. J. Chirality of glutathione surface coating affects the cytotoxicity of quantum dots. Angew. Chem., Int. Ed. 2011, 50, 5860-5864.
[31]
Huang, Y. Y.; Fu, Y. T.; Li, M. T.; Jiang, D. W.; Kutyreff, C. J.; Engle, J. W.; Lan, X. L.; Cai, W. B.; Chen, T. F. Chirality-driven transportation and oxidation prevention by chiral selenium nanoparticles. Angew. Chem., Int. Ed. 2020, 59, 4406-4414.
[32]
Zhang, C.; Lu, J. H.; Tian, F. L.; Li, L. D.; Hou, Y. Q.; Wang, Y. Y.; Sun, L. D.; Shi, X. H.; Lu, H. Regulation of the cellular uptake of nanoparticles by the orientation of helical polypeptides. Nano Res. 2019, 12, 889-896.
[33]
Liu, T.; Xu, L. G.; He, L. Z.; Zhao, J. F.; Zhang, Z. H.; Chen, Q.; Chen, T. F. Selenium nanoparticles regulates selenoprotein to boost cytokine-induced killer cells-based cancer immunotherapy. Nano Today 2020, 35, 100975.
[34]
Liu, C.; Lai, H. Q.; Chen, T. F. Boosting natural killer cell-based cancer immunotherapy with selenocystine/transforming growth factor-beta inhibitor-encapsulated Nanoemulsion. ACS Nano 2020, 14, 11067-11082.
[35]
Hu, Y.; Liu, T.; Li, J. X.; Mai, F. Y.; Li, J. W.; Chen, Y.; Jing, Y. Y.; Dong, X.; Lin, L.; He, J. et al. Selenium nanoparticles as new strategy to potentiate γδT cell anti-tumor cytotoxicity through upregulation of tubulin-α acetylation. Biomaterials 2019, 222, 119397.
[36]
Srivastava, I.; Misra, S. K.; Ostadhossein, F.; Daza, E.; Singh, J.; Pan, D. Surface chemistry of carbon nanoparticles functionally select their uptake in various stages of cancer cells. Nano Res. 2017, 10, 3269-3284.
[37]
Guller, A. E.; Generalova, A. N.; Petersen, E. V.; Nechaev, A. V.; Trusova, I. A.; Landyshev, N. N.; Nadort, A.; Grebenik, E. A.; Deyev, S. M.; Shekhter, A. B. et al. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Res. 2015, 8, 1546-1562.
[38]
Wang, Y.; Xia, Y. S. Near-infrared optically active Cu2-xS nanocrystals: Sacrificial template-ligand exchange integration fabrication and chirality dependent autophagy effects. J. Mater. Chem. B 2020, 8, 7921-7930.
[39]
Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun’ko, Y. K.; Baranov, A. V. Enantioselective cellular uptake of chiral semiconductor nanocrystals. Nanotechnology 2016, 27, 075102.
[40]
Han, Y. P.; Li, X. M.; Chen, H. B.; Hu, X. J.; Luo, Y.; Wang, T.; Wang, Z. J.; Li, Q.; Fan, C. H.; Shi, J. Y. et al. Real-time imaging of endocytosis and intracellular trafficking of semiconducting polymer dots. ACS Appl. Mater. Interfaces 2017, 9, 21200-21208.
[41]
Wang, G.; Wu, B.; Cui, Y.; Zhang, B.; Jiang, C. Y.; Wang, H. Y. Teneligliptin promotes bile acid synthesis and attenuates lipid accumulation in obese mice by targeting the KLF15-Fgf15 pathway. Chem. Res. Toxicol. 2020, 33, 2164-2171.
[42]
Badiee, M.; Tochtrop, G. P. Bile acid recognition by mouse Ileal bile acid binding protein. ACS Chem. Biol. 2017, 12, 3049-3056.
[43]
Lin, S.; Yang, X. M.; Yuan, P. Q.; Yang, J. M.; Wang, P.; Zhong, H. J.; Zhang, X. L.; Che, L. Q.; Feng, B.; Li, J. et al. Undernutrition shapes the Gut Microbiota and bile acid profile in association with altered gut-liver FXR signaling in weaning pigs. J. Agric. Food Chem. 2019, 67, 3691-3701.
[44]
Xu, L. W.; Guo, L. L.; Wang, Z. X.; Xu, X. X.; Zhang, S.; Wu, X. L.; Kuang, H.; Xu, C. L. Profiling and identification of Biocatalyzed transformation of Sulfoxaflor in vivo. Angew. Chem., Int. Ed. 2020, 59, 16218-16224.
File
12274_2020_3250_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 October 2020
Revised: 13 November 2020
Accepted: 16 November 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 21874058, 51802125, 51902136, 21771090, 31771084, 21631005, and 21673104), and the Fundamental Research Funds for the Central Universities (No. JUSRP12003).

Return