[1]
Cecconello, A.; Besteiro, L. V.; Govorov, A. O.; Willner, I. Chiroplasmonic DNA-based nanostructures. Nat. Rev. Mater. 2017, 2, 17039.
[2]
Chen, Z.; Wang, Q.; Wu, X.; Li, Z.; Jiang, Y. B. Optical chirality sensing using macrocycles, synthetic and supramolecular oligomers/polymers, and nanoparticle based sensors. Chem. Soc. Rev. 2015, 44, 4249-4263.
[3]
Ma, W.; Hao, C. L.; Sun, M. Z.; Xu, L. G.; Xu, C. L.; Kuang, H. Tuning of chiral construction, structural diversity, scale transformation and chiroptical applications. Mater. Horiz. 2018, 5, 141-161.
[4]
Wang, Y.; Xu, J.; Wang, Y. W.; Chen, H. Y. Emerging chirality in nanoscience. Chem. Soc. Rev. 2013, 42, 2930-2962.
[5]
Ge, P.; Zhang, C. Y.; Hou, H. S.; Wu, B. K.; Zhou, L.; Li, S. J.; Wu, T. J.; Hu, J. G.; Mai, L. Q.; Ji, X. B. Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property. Nano Energy 2018, 48, 617-629.
[6]
Zhang, X.; Yin, J.; Yoon, J. Recent advances in development of chiral fluorescent and colorimetric sensors. Chem. Rev. 2014, 114, 4918-4959.
[7]
Klos, G.; Andersen, A.; Miola, M.; Birkedal, H.; Sutherland, D. S. Oxidation controlled lift-off of 3D chiral plasmonic Au nano-hooks. Nano Res. 2019, 12, 1635-1642.
[8]
Li, Y. W.; Cheng, J. J.; Li, J. G.; Zhu, X.; He, T. C.; Chen, R.; Tang, Z. K. Tunable Chiroptical properties from the plasmonic band to metal-ligand charge transfer band of cysteine-capped molybdenum oxide nanoparticles. Angew. Chem., Int. Ed. 2018, 57, 10236-10240.
[9]
Hao, C. L.; Qu, A. H.; Xu, L. G.; Sun, M. Z.; Zhang, H. Y.; Xu, C. L.; Kuang, H. Chiral molecule-mediated porous CuxO nanoparticle clusters with Antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 2019, 141, 1091-1099.
[10]
Yeom, J.; Santos, U. S.; Chekini, M.; Cha, M.; de Moura, A. F.; Kotov, N. A. Chiromagnetic nanoparticles and gels. Science 2018, 359, 309-314.
[11]
Hao, C. L.; Wu, X. L.; Sun, M. Z.; Zhang, H. Y.; Yuan, A. M.; Xu, L. G.; Xu, C. L.; Kuang, H. Chiral core-shell upconversion nanoparticle@MOF nanoassemblies for quantification and bioimaging of reactive oxygen species in vivo. J. Am. Chem. Soc. 2019, 141, 19373-19378.
[12]
Kuno, J.; Imamura, Y.; Katouda, M.; Tashiro, M.; Kawai, T.; Nakashima, T. Inversion of optical activity in the synthesis of mercury sulfide nanoparticles: Role of ligand coordination. Angew. Chem., Int. Ed. 2018, 57, 12022-12026.
[13]
Li, F.; Li, Y. Y.; Yang, X.; Han, X. X.; Jiao, Y.; Wei, T. T.; Yang, D. Y.; Xu, H. P.; Nie, G. J. Highly fluorescent chiral N-S-doped carbon dots from cysteine: Affecting cellular energy metabolism. Angew. Chem., Int. Ed. 2018, 57, 2377-2382.
[14]
Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid- and peptide- directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360-365.
[15]
Zhang, Q. F.; Hernandez, T.; Smith, K. W.; Jebeli, S. A. H.; Dai, A. X.; Warning, L.; Baiyasi, R.; McCarthy, L. A.; Guo, H.; Chen, D. H. et al. Unraveling the origin of chirality from plasmonic nanoparticle- protein complexes. Science 2019, 365, 1475-1478.
[16]
Ma, W.; Xu, L. G.; de Moura, A. F.; Wu, X. L.; Kuang, H.; Xu, C. L.; Kotov, N. A. Chiral inorganic nanostructures. Chem. Rev. 2017, 117, 8041-8093.
[17]
Wu, X. L.; Xu, L. G.; Liu, L. Q.; Ma, W.; Yin, H. H.; Kuang, H.; Wang, L. B.; Xu, C. L.; Kotov, N. A. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J. Am. Chem. Soc. 2013, 135, 18629-18636.
[18]
Kumar, J.; Eraña, H.; López-Martinez, E.; Claes, N.; Martin, V. F.; Solis, D. M.; Bals, S.; Cortajarena, A. L.; Castilla, J.; Liz-Marzán, L. M. Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc. Natl. Acad. Sci. USA 2018, 115, 3225-3230.
[19]
Li, S.; Xu, L. G.; Ma, W.; Wu, X. L.; Sun, M. Z.; Kuang, H.; Wang, L. B.; Kotov, N. A.; Xu, C. L. Dual-mode ultrasensitive quantification of MicroRNA in living cells by chiroplasmonic nanopyramids self- assembled from gold and upconversion nanoparticles. J. Am. Chem. Soc. 2016, 138, 306-312.
[20]
Hao, C. L.; Xu, L. G.; Kuang, H.; Xu, C. L. Artificial chiral probes and bioapplications. Adv. Mater. 2020, 32, 1802075.
[21]
Li, Y. W.; Miao, Z. W.; Shang, Z. W.; Cai, Y.; Cheng, J. J.; Xu, X. Q. A visible- and NIR-light responsive photothermal therapy agent by chirality-dependent MoO3-x nanoparticles. Adv. Funct. Mater. 2020, 30, 1906311.
[22]
Gao, F. L.; Sun, M. Z.; Ma, W.; Wu, X. L.; Liu, L. Q.; Kuang, H.; Xu, C. L. A singlet oxygen generating agent by chirality-dependent plasmonic shell-satellite nanoassembly. Adv. Mater. 2017, 29, 1606864.
[23]
Sun, M. Z.; Xu, L. G.; Qu, A. H.; Zhao, P.; Hao, T. T.; Ma, W.; Hao, C. L.; Wen, X. D.; Colombari, F. M.; de Moura, A. F. et al. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem. 2018, 10, 821-830.
[24]
Hao, C. L.; Gao, R.; Li, Y.; Xu, L. G.; Sun, M. Z.; Xu, C. L.; Kuang, H. Chiral semiconductor nanoparticles for protein catalysis and profiling. Angew. Chem., Int. Ed. 2019, 58, 7371-7374.
[25]
Yeom, J.; Guimaraes, P. P. G.; Ahn, H. M.; Jung, B. K.; Hu, Q. Y.; McHugh, K.; Mitchell, M. J.; Yun, C. O.; Langer, R.; Jaklenec, A. Chiral supraparticles for controllable nanomedicine. Adv. Mater. 2020, 32, 1903878.
[26]
Poon, W.; Zhang, Y. N.; Ouyang, B.; Kingston, B. R.; Wu, J. L. Y.; Wilhelm, S.; Chan, W. C. W. Elimination pathways of nanoparticles. ACS Nano 2019, 13, 5785-5798.
[27]
Hao, J. L.; Song, G. S.; Liu, T.; Yi, X.; Yang, K.; Cheng, L.; Liu, Z. In vivo long-term biodistribution, excretion, and toxicology of PEGylated transition-metal Dichalcogenides MS2 (M = Mo, W, Ti) Nanosheets. Adv. Sci. 2017, 4, 1600160.
[28]
Su, Y. Y.; Peng, F.; Jiang, Z. Y.; Zhong, Y. L.; Lu, Y. M.; Jiang, X. X.; Huang, Q.; Fan, C. H.; Lee, S. T.; He, Y. In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium- containing quantum dots. Biomaterials 2011, 32, 5855-5862.
[29]
Zhang, Y.; Zhang, Y. J.; Hong, G. S.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G. C.; Liu, Z.; Dai, H. J. et al. Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 2013, 34, 3639-3646.
[30]
Li, Y. Y.; Zhou, Y. L.; Wang, H. Y.; Perrett, S.; Zhao, Y. L.; Tang, Z. Y.; Nie, G. J. Chirality of glutathione surface coating affects the cytotoxicity of quantum dots. Angew. Chem., Int. Ed. 2011, 50, 5860-5864.
[31]
Huang, Y. Y.; Fu, Y. T.; Li, M. T.; Jiang, D. W.; Kutyreff, C. J.; Engle, J. W.; Lan, X. L.; Cai, W. B.; Chen, T. F. Chirality-driven transportation and oxidation prevention by chiral selenium nanoparticles. Angew. Chem., Int. Ed. 2020, 59, 4406-4414.
[32]
Zhang, C.; Lu, J. H.; Tian, F. L.; Li, L. D.; Hou, Y. Q.; Wang, Y. Y.; Sun, L. D.; Shi, X. H.; Lu, H. Regulation of the cellular uptake of nanoparticles by the orientation of helical polypeptides. Nano Res. 2019, 12, 889-896.
[33]
Liu, T.; Xu, L. G.; He, L. Z.; Zhao, J. F.; Zhang, Z. H.; Chen, Q.; Chen, T. F. Selenium nanoparticles regulates selenoprotein to boost cytokine-induced killer cells-based cancer immunotherapy. Nano Today 2020, 35, 100975.
[34]
Liu, C.; Lai, H. Q.; Chen, T. F. Boosting natural killer cell-based cancer immunotherapy with selenocystine/transforming growth factor-beta inhibitor-encapsulated Nanoemulsion. ACS Nano 2020, 14, 11067-11082.
[35]
Hu, Y.; Liu, T.; Li, J. X.; Mai, F. Y.; Li, J. W.; Chen, Y.; Jing, Y. Y.; Dong, X.; Lin, L.; He, J. et al. Selenium nanoparticles as new strategy to potentiate γδT cell anti-tumor cytotoxicity through upregulation of tubulin-α acetylation. Biomaterials 2019, 222, 119397.
[36]
Srivastava, I.; Misra, S. K.; Ostadhossein, F.; Daza, E.; Singh, J.; Pan, D. Surface chemistry of carbon nanoparticles functionally select their uptake in various stages of cancer cells. Nano Res. 2017, 10, 3269-3284.
[37]
Guller, A. E.; Generalova, A. N.; Petersen, E. V.; Nechaev, A. V.; Trusova, I. A.; Landyshev, N. N.; Nadort, A.; Grebenik, E. A.; Deyev, S. M.; Shekhter, A. B. et al. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Res. 2015, 8, 1546-1562.
[38]
Wang, Y.; Xia, Y. S. Near-infrared optically active Cu2-xS nanocrystals: Sacrificial template-ligand exchange integration fabrication and chirality dependent autophagy effects. J. Mater. Chem. B 2020, 8, 7921-7930.
[39]
Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun’ko, Y. K.; Baranov, A. V. Enantioselective cellular uptake of chiral semiconductor nanocrystals. Nanotechnology 2016, 27, 075102.
[40]
Han, Y. P.; Li, X. M.; Chen, H. B.; Hu, X. J.; Luo, Y.; Wang, T.; Wang, Z. J.; Li, Q.; Fan, C. H.; Shi, J. Y. et al. Real-time imaging of endocytosis and intracellular trafficking of semiconducting polymer dots. ACS Appl. Mater. Interfaces 2017, 9, 21200-21208.
[41]
Wang, G.; Wu, B.; Cui, Y.; Zhang, B.; Jiang, C. Y.; Wang, H. Y. Teneligliptin promotes bile acid synthesis and attenuates lipid accumulation in obese mice by targeting the KLF15-Fgf15 pathway. Chem. Res. Toxicol. 2020, 33, 2164-2171.
[42]
Badiee, M.; Tochtrop, G. P. Bile acid recognition by mouse Ileal bile acid binding protein. ACS Chem. Biol. 2017, 12, 3049-3056.
[43]
Lin, S.; Yang, X. M.; Yuan, P. Q.; Yang, J. M.; Wang, P.; Zhong, H. J.; Zhang, X. L.; Che, L. Q.; Feng, B.; Li, J. et al. Undernutrition shapes the Gut Microbiota and bile acid profile in association with altered gut-liver FXR signaling in weaning pigs. J. Agric. Food Chem. 2019, 67, 3691-3701.
[44]
Xu, L. W.; Guo, L. L.; Wang, Z. X.; Xu, X. X.; Zhang, S.; Wu, X. L.; Kuang, H.; Xu, C. L. Profiling and identification of Biocatalyzed transformation of Sulfoxaflor in vivo. Angew. Chem., Int. Ed. 2020, 59, 16218-16224.