Journal Home > Volume 14 , Issue 7

Developing anode catalysts of substantially enhanced activity for hydrogen oxidation reaction (HOR) and anti-CO poisoning performance is of great importance for the application of proton exchange membrane fuel cells (PEMFCs). Herein, we report Pd cluster in situ decorated urchin-like W18O49 (WO2.72) electrocatalysts by a photo-reduction method for high performance HOR. The synthesized Pd-WO2.72-L composite of low loading amount of 0.44 wt.% Pd by Xenon light reduction exhibits markedly high HOR catalytic activity and stability in 0.5 M H2SO4, and the specific HOR current density and mass activity of Pd-WO2.72-L are ~ 1.5 and ~ 80 times those of 20 wt.% Pt/C catalyst, respectively. Moreover, excellent anti-CO poisoning ability has also been obtained. The excellent HOR activity and anti-CO poisoning performance of Pd-WO2.72-L have been discussed mainly in terms of the dual synergetic catalytic effects between Pd and WO2.72: Pd activation to Pdδ+ by the electron transfer from Pd to W promotes the hydrogen adsorption and activation to H* species, which results in largely elevated HOR activity; Pd degradation due to the CO poisoning is effectively prevented by WO2.72, which is responsible for the excellent CO-tolerance performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dual synergetic catalytic effects boost hydrogen electric oxidation performance of Pd/W18O49

Show Author's information Lingxin Peng1,2Han Tian1,2Xiangzhi Cui1,2,3( )Liang Su4Ge Meng1,2Zhonghua Ma5Shaowen Cao6Jianlin Shi1,2( )
State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

Abstract

Developing anode catalysts of substantially enhanced activity for hydrogen oxidation reaction (HOR) and anti-CO poisoning performance is of great importance for the application of proton exchange membrane fuel cells (PEMFCs). Herein, we report Pd cluster in situ decorated urchin-like W18O49 (WO2.72) electrocatalysts by a photo-reduction method for high performance HOR. The synthesized Pd-WO2.72-L composite of low loading amount of 0.44 wt.% Pd by Xenon light reduction exhibits markedly high HOR catalytic activity and stability in 0.5 M H2SO4, and the specific HOR current density and mass activity of Pd-WO2.72-L are ~ 1.5 and ~ 80 times those of 20 wt.% Pt/C catalyst, respectively. Moreover, excellent anti-CO poisoning ability has also been obtained. The excellent HOR activity and anti-CO poisoning performance of Pd-WO2.72-L have been discussed mainly in terms of the dual synergetic catalytic effects between Pd and WO2.72: Pd activation to Pdδ+ by the electron transfer from Pd to W promotes the hydrogen adsorption and activation to H* species, which results in largely elevated HOR activity; Pd degradation due to the CO poisoning is effectively prevented by WO2.72, which is responsible for the excellent CO-tolerance performance.

Keywords: synergistic effect, tungsten oxide, hydrogen oxygen reaction, photo-reduction method, CO tolerance catalyst

References(41)

[1]
Hunt, S. T.; Milina, M.; Wang, Z. S.; Román-Leshkov, Y. Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: Sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles. Energy Environ. Sci. 2016, 9, 3290-3301.
[2]
Wang, Y. J.; Long, W. Y.; Wang, L. L.; Yuan, R. S.; Ignaszak, A.; Fang, B. Z.; Wilkinson, D. P. Unlocking the door to highly active ORR catalysts for PEMFC applications: Polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 2018, 11, 258-275.
[3]
Wei, C.; Rao, R. R.; Peng, J. Y.; Huang, B. T.; Stephens, I. E. L.; Risch, M.; Xu, Z. J.; Shao-Horn, Y. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 2019, 31, 1806296.
[4]
Tian, X. Y.; Zhao, P. C.; Sheng, W. C. Hydrogen evolution and oxidation: Mechanistic studies and material advances. Adv. Mater. 2019, 31, 1808066.
[5]
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
[6]
Tang, Y. F.; Zhang, H. M.; Zhong, H. X.; Xu, Z. In-situ investigation on the CO tolerance of carbon supported Pd-Pt electrocatalysts with low Pt content by electrochemical impedance spectroscopy. Int. J. Hydrogen Energy 2012, 37, 2129-2136.
[7]
Tang, S. S.; Courté, M.; Peng, J. J.; Fichou, D. Oxygen-deficient WO3 via high-temperature two-step annealing for enhanced and highly stable water splitting. Chem. Commun. 2019, 55, 7958-7961.
[8]
Zheng, T. T.; Sang, W.; He, Z. H.; Wei, Q. S.; Chen, B. W.; Li, H. L.; Cao, C.; Huang, R. J.; Yan, X. P.; Pan, B. C. et al. Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution. Nano Lett. 2017, 17, 7968-7973.
[9]
Xu, J.; Li, Y. Y.; Wang, L.; Cai, Q. F.; Li, Q. W.; Gao, B.; Zhang, X. M.; Huo, K. F.; Chu, P. K. High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes. Nanoscale 2016, 8, 16761-16768.
[10]
Huang, Z. F.; Song, J. J.; Pan, L.; Zhang, X. W.; Wang, L.; Zou, J. J. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 2015, 27, 5309-5327.
[11]
Fu, J. W.; Xu, Q. L.; Low, J.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B: Environ. 2019, 243, 556-565.
[12]
Zou, Y. D.; Xi, S. B.; Bo, T.; Zhou, X. R.; Ma, J. H.; Yang, X. Y.; Diao, C. Z.; Deng, Y. H. Mesoporous amorphous Al2O3/crystalline WO3 heterophase hybrids for electrocatalysis and gas sensing applications. J. Mater. Chem. A 2019, 7, 21874-21883.
[13]
Ma, J. H.; Ren, Y.; Zhou, X. R.; Liu, L. L.; Zhu, Y. H.; Cheng, X. W.; Xu, P. C.; Li, X. X.; Deng, Y. H.; Zhao, D. Y. Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: Gas sensing performance and mechanism study. Adv. Funct. Mater. 2018, 28, 1705268.
[14]
Park, J.; Lee, S.; Kim, H. E.; Cho, A.; Kim, S.; Ye, Y.; Han, J. W.; Lee, H.; Jang, J. H.; Lee, J. Investigation of the support effect in atomically dispersed Pt on WO3-x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16038-16042.
[15]
Tian, H.; Cui, X. Z.; Zeng, L. M.; Su, L.; Song, Y. L.; Shi, J. L. Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst. J. Mater. Chem. A 2019, 7, 6285-6293.
[16]
Cui, Y. L. S.; Xiao, K. F.; Bedford, N. M.; Lu, X. X.; Yun, J.; Amal, R.; Wang, D. W. Refilling nitrogen to oxygen vacancies in ultrafine tungsten oxide clusters for superior lithium storage. Adv. Energy Mater. 2019, 9, 1902148.
[17]
Hobbs, B.; Tseung, A. C. C. High performance, platinum activated tungsten oxide fuel cell electrodes. Nature 1969, 222, 556-558.
[18]
Brković, S. M.; Nikolić, V. M.; Marčeta Kaninski, M. P.; Pašti, I. A. Pt/C catalyst impregnated with tungsten-oxide - Hydrogen oxidation reaction vs. CO tolerance. Int. J. Hydrogen Energy 2019, 44, 13364-13372.
[19]
Cui, X. Z.; Shi, J. L.; Chen, H. R.; Zhang, L. X.; Guo, L. M.; Gao, J. H.; Li, J. B. Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation. J. Phys. Chem. B 2008, 112, 12024-12031.
[20]
Cui, X. Z.; Zhang, H.; Dong, X. P.; Chen, H. R.; Zhang, L. X.; Guo, L. M.; Shi, J. L. Electrochemical catalytic activity for the hydrogen oxidation of mesoporous WO3 and WO3/C composites. J. Mater. Chem. 2008, 18, 3575-3580.
[21]
Cui, X.; Hua, Z.; Wei, C.; Shu, Z.; Zhang, L.; Chen, H.; Shi, J. An in situ carbonization-replication method to synthesize mesostructured WO3/C composite as nonprecious-metal anode catalyst in PEMFC. Chem. Asian J. 2013, 8, 429-436.
[22]
Cui, X. Z.; Shi, J. L.; Wang, Y. X.; Chen, Y.; Zhang, L. X.; Hua, Z. L. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells. ChemSusChem 2014, 7, 135-145.
[23]
Olu, P. Y.; Ohnishi, T.; Ayato, Y.; Mochizuki, D.; Sugimoto, W. Insights into the enhanced tolerance to carbon monoxide on model tungsten trioxide-decorated polycrystalline platinum electrode. Electrochem. Commun. 2016, 71, 69-72.
[24]
Song, J. J.; Huang, Z. F.; Pan, L.; Zou, J. J.; Zhang, X. W.; Wang, L. Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst. ACS Catal. 2015, 5, 6594-6599.
[25]
Tong, Y. Y.; Guo, H. P.; Liu, D. L.; Yan, X.; Su, P. P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 7356-7361.
[26]
Kwon, K.; Jin, S. A.; Lee, K. H.; You, D. J.; Pak, C. Performance enhancement of Pd-based hydrogen oxidation catalysts using tungsten oxide. Catal. Today 2014, 232, 175-178.
[27]
Wang, Y.; Wang, X. X.; Xu, Y. H.; Chen, T.; Liu, M. L.; Niu, F. S.; Wei, S.; Liu, J. Q. Simultaneous synthesis of WO3-x quantum dots and bundle-like nanowires using a one-pot template-free solvothermal strategy and their versatile applications. Small 2017, 13, 1603689.
[28]
Zhu, W. Y.; Liu, J. C.; Yu, S. Y.; Zhou, Y.; Yan, X. L. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. J. Hazard. Mater. 2016, 318, 407-416.
[29]
Zhang, N.; Jalil, A.; Wu, D. X.; Chen, S. M.; Liu, Y. F.; Gao, C.; Ye, W.; Qi, Z. M.; Ju, H. X.; Wang, C. M. et al. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434-9443.
[30]
Ahn, S. H.; Klein, M. J.; Manthiram, A. 1D Co- and N-doped hierarchically porous carbon nanotubes derived from bimetallic metal organic framework for efficient oxygen and tri-iodide reduction reactions. Adv. Energy Mater. 2017, 7, 1601979.
[31]
Tan, Q.; Shu, C. Y.; Abbott, J.; Zhao, Q. F.; Liu, L. T.; Qu, T.; Chen, Y. Z.; Zhu, H. Y.; Liu, Y. N.; Wu, G. Highly dispersed Pd-CeO2 nanoparticles supported on N-doped core-shell structured mesoporous carbon for methanol oxidation in alkaline media. ACS Catal. 2019, 9, 6362-6371.
[32]
Kucherov, A. V.; Shelef, M. An in situ ESR study of Pd/H-ZSM-5 interaction with different adsorbents. Catal. Lett. 2001, 75, 19-24.
[33]
Lu, Y.; Wang, W.; Chen, X. W.; Zhang, Y. H.; Han, Y. C.; Cheng, Y.; Chen, X. J.; Liu, K.; Wang, Y. Y.; Zhang, Q. B. et al. Composition optimized trimetallic PtNiRu dendritic nanostructures as versatile and active electrocatalysts for alcohol oxidation. Nano Res. 2019, 12, 651-657.
[34]
Yuan, X. L.; Jiang, B.; Cao, M. H.; Zhang, C. Y.; Liu, X. Z.; Zhang, Q. H.; Lyu, F. L.; Gu, L.; Zhang, Q. Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction. Nano Res. 2020, 13, 265-272.
[35]
Zeng, Y. X.; Lai, Z. Z.; Han, Y.; Zhang, H. Z.; Xie, S. L.; Lu, X. H. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 2018, 30, 1802396.
[36]
Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454-462.
[37]
Xu, Y. F.; Zhang, C.; Zhang, L. X.; Zhang, X. H.; Yao, H. L.; Shi, J. L. Pd-catalyzed instant hydrogenation of TiO2 with enhanced photocatalytic performance. Energy Environ. Sci. 2016, 9, 2410-2417.
[38]
Zhou, R.; Lin, X. P.; Xue, D. Y.; Zong, F. Y.; Zhang, J. M.; Duan, X. C.; Li, Q. H.; Wang, T. H. Enhanced H2 gas sensing properties by Pd-loaded urchin-like W18O49 hierarchical nanostructures. Sens. Actuators B Chem. 2018, 260, 900-907.
[39]
Tao, L.; Shi, Y. L.; Huang, Y. C.; Chen, R.; Zhang, Y. Q.; Huo, J.; Zou, Y. Q.; Yu, G.; Luo, J.; Dong, C. L. et al. Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation. Nano Energy 2018, 53, 604-612.
[40]
Cui, X. Z.; Zhu, Y.; Hua, Z. L.; Feng, J. W.; Liu, Z. W.; Chen, L. S.; Shi, J. L. SnO2 nanocrystal-decorated mesoporous ZSM-5 as a precious metal-free electrode catalyst for methanol oxidation. Energy Environ. Sci. 2015, 8, 1261-1266.
[41]
Shi, J. L. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem. Rev. 2013, 113, 2139-2181.
File
12274_2020_3248_MOESM1_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 September 2020
Revised: 19 October 2020
Accepted: 16 November 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors gratefully acknowledged the support from the Natural Science Foundation of Shanghai (No. 19ZR1479400), the State Key Laboratory for Modication of Chemical Fibers and Polymer Materials, Donghua University (No. KF1818), and the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology).

Return