Journal Home > Volume 14 , Issue 7

Boron nitride nanosheets (BNNSs) have gained significant attraction in energy and environment fields because of their two-dimensional (2D) nature, large band gap and high thermal/mechanical performance. However, the current low production efficiency of high-quality BNNSs is still a bottleneck limiting their applications. Herein, based on sonication-assisted liquid-phase exfoliation, we demonstrated a rapid, high-efficient and scalable production strategy of BNNSs and documented the effects of a spectrum of exfoliation factors (e.g., ultrasonic condition, solvent and bulk material feeding) on the yield of BNNSs. A record of yield of 72.5% was achieved while the exfoliated BNNSs have few-layer and defect-free feature. Thanks to the Lewis acid sites of the boron atoms, the BNNSs can interact with the polysulfide anions in liquid electrolyte and also can facilitate the uniform lithium deposition, which finally endow a lithium-sulfur (Li-S) battery with long life. This work provides a facile and rapid strategy for large scale preparation of high-quality BNNSs, also contributes a long-life strategy for dendrite-free Li-S battery, opens new avenues of BNNSs in energy application.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries

Show Author's information Yu Chen§Qi Kang§Pingkai JiangXingyi Huang( )
Frontiers Science Center for Transformative Molecules, Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

§ Yu Chen and Qi Kang contributed equally to this work.

Abstract

Boron nitride nanosheets (BNNSs) have gained significant attraction in energy and environment fields because of their two-dimensional (2D) nature, large band gap and high thermal/mechanical performance. However, the current low production efficiency of high-quality BNNSs is still a bottleneck limiting their applications. Herein, based on sonication-assisted liquid-phase exfoliation, we demonstrated a rapid, high-efficient and scalable production strategy of BNNSs and documented the effects of a spectrum of exfoliation factors (e.g., ultrasonic condition, solvent and bulk material feeding) on the yield of BNNSs. A record of yield of 72.5% was achieved while the exfoliated BNNSs have few-layer and defect-free feature. Thanks to the Lewis acid sites of the boron atoms, the BNNSs can interact with the polysulfide anions in liquid electrolyte and also can facilitate the uniform lithium deposition, which finally endow a lithium-sulfur (Li-S) battery with long life. This work provides a facile and rapid strategy for large scale preparation of high-quality BNNSs, also contributes a long-life strategy for dendrite-free Li-S battery, opens new avenues of BNNSs in energy application.

Keywords: cavitation, lithium-sulfur batteries, boron nitride nanosheets, sonication-assisted liquid-phase exfoliation (SALPE), modified separators

References(59)

[1]
Li, Q.; Chen, L.; Gadinski, M. R.; Zhang, S. H.; Zhang, G. Z.; Li, H. U.; Iagodkine, E.; Haque, A.; Chen, L. Q.; Jackson, T. N. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576-579.
[2]
Jo, I.; Pettes, M. T.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 2013, 13, 550-554.
[3]
Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934-959.
[4]
Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44-126.
[5]
Kudin, K. N.; Scuseria, G. E.; Yakobson, B. I. C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 2001, 64, 235406.
[6]
Chen, J.; Huang, X. Y.; Sun, B.; Jiang, P. K. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 2019, 13, 337-345.
[7]
Chen, J.; Wei, H.; Bao, H.; Jiang, P. K.; Huang, X. Y. Millefeuille- inspired thermally conductive polymer nanocomposites with overlapping BN nanosheets for thermal management applications. ACS Appl. Mater. Interfaces 2019, 11, 31402-31410.
[8]
Min, Y. J.; Kang, K. H.; Kim, D. E. Development of polyimide films reinforced with boron nitride and boron nitride nanosheets for transparent flexible device applications. Nano Res. 2018, 11, 2366-2378.
[9]
Zhang, D. L.; Zha, J. W.; Li, C. Q.; Li, W. K.; Wang, S. J.; Wen, Y. Q.; Dang, Z. M. High thermal conductivity and excellent electrical insulation performance in double-percolated three-phase polymer nanocomposites. Compos. Sci. Technol. 2017, 144, 36-42.
[10]
Zhu, Y. K.; Zhu, Y. J.; Huang, X. Y.; Chen, J.; Li, Q.; He, J. L.; Jiang, P. K. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Energy Mater. 2019, 9, 1901826.
[11]
Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; del Pino, A. P.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655-2694.
[12]
Kawrani, S.; Nada, A. A.; Bekheet, M. F.; Boulos, M.; Viter, R.; Roualdes, S.; Miele, P.; Cornu, D.; Bechelany, M. Enhancement of calcium copper titanium oxide photoelectrochemical performance using boron nitride nanosheets. Chem. Eng. J. 2020, 389, 124326.
[13]
Kiran, M. S. R. N.; Raidongia, K.; Ramamurty, U.; Rao, C. N. R. Improved mechanical properties of polymer nanocomposites incorporating graphene-like BN: Dependence on the number of BN layers. Scripta Mater. 2011, 64, 592-595.
[14]
Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209-3215.
[15]
Wei, W.; Pan, J. Q.; Euaruksakul, C.; Yang, Y.; Cui, Y.; Fu, Q.; Bao, X. H. Dynamic observation of in-plane h-BN/graphene heterostructures growth on Ni(111). Nano Res. 2020, 13, 1789-1794.
[16]
Lei, W. W.; Mochalin, V. N.; Liu, D.; Qin, S.; Gogotsi, Y.; Chen, Y. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 2015, 6, 8849.
[17]
Chen, S. H.; Xu, R. Z.; Liu, J. M.; Zou, X. L.; Qiu, L.; Kang, F. Y.; Liu, B. L.; Cheng, H. M. Simultaneous production and functionalization of boron nitride nanosheets by sugar-assisted mechanochemical exfoliation. Adv. Mater. 2019, 31, 1804810.
[18]
Wang, Y.; Mayorga-Martinez, C. C.; Chia, X. Y.; Sofer, Z.; Pumera, M. Nonconductive layered hexagonal boron nitride exfoliation by bipolar electrochemistry. Nanoscale 2018, 10, 7298-7303.
[19]
Wang, N.; Yang, G.; Wang, H. X.; Yan, C. Z.; Sun, R.; Wong, C. P. A universal method for large-yield and high-concentration exfoliation of two-dimensional hexagonal boron nitride nanosheets. Mater. Today 2019, 27, 33-42.
[20]
Chen, X. J.; Dobson, J. F.; Raston, C. L. Vortex fluidic exfoliation of graphite and boron nitride. Chem. Commun. 2012, 48, 3703-3705.
[21]
Tian, X. J.; Li, Y.; Chen, Z.; Li, Q.; Hou, L. Q.; Wu, J. Y.; Tang, Y. S.; Li, Y. F. Shear-assisted production of few-layer boron nitride nanosheets by supercritical CO2 exfoliation and its use for thermally conductive epoxy composites. Sci. Rep. 2017, 7, 17794.
[22]
Zhao, H. R.; Ding, J. H.; Shao, Z. Z.; Xu, B. Y.; Zhou, Q. B.; Yu, H. B. High-quality boron nitride nanosheets and their bioinspired thermally conductive papers. ACS Appl. Mater. Interfaces 2019, 11, 37247-37255.
[23]
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High- yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563-568.
[24]
Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two- dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.
[25]
Sun, W. L.; Meng, Y.; Fu, Q. R.; Wang, F.; Wang, G. J.; Gao, W. H.; Huang, X. C.; Lu, F. S. High-yield production of boron nitride nanosheets and its uses as a catalyst support for hydrogenation of nitroaromatics. ACS Appl. Mater. Interfaces 2016, 8, 9881-9888.
[26]
Morishita, T.; Okamoto, H.; Katagiri, Y.; Matsushita, M.; Fukumori, K. A high-yield ionic liquid-promoted synthesis of boron nitride nanosheets by direct exfoliation. Chem. Commun. 2015, 51, 12068-12071.
[27]
Morishita, T.; Okamoto, H. Facile exfoliation and noncovalent superacid functionalization of boron nitride nanosheets and their use for highly thermally conductive and electrically insulating polymer nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 27064-27073.
[28]
Yang, W. W.; Xiao, J. W.; Ma, Y.; Cui, S. Q.; Zhang, P.; Zhai, P. B.; Meng, L. J.; Wang, X. G.; Wei, Y.; Du, Z. G. et al. Tin intercalated ultrathin MoO3 nanoribbons for advanced lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1803137.
[29]
Cai, W. L.; Song, Y. Z.; Fang, Y. T.; Wang, W. W.; Yu, S. L.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Defect engineering on carbon black for accelerated Li-S chemistry. Nano Res. 2020, 13, 3315-3320.
[30]
Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617-624.
[31]
Wang, J.; Jia, L.; Lin, H.; Zhang, Y. Single-atomic catalysts embedded on nanocarbon supports for high energy density lithium-sulfur batteries. ChemSusChem 2020, 13, 3404-3411.
[32]
Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856-1866.
[33]
Ye, C.; Chao, D. L.; Shan, J. Q.; Li, H.; Davey, K.; Qiao, S. Z. Unveiling the advances of 2D materials for Li/Na-S batteries experimentally and theoretically. Matter 2020, 2, 323-344.
[34]
Zheng, Z. Y.; Cox, M.; Li, B. Surface modification of hexagonal boron nitride nanomaterials: A review. J. Mater. Sci. 2018, 53, 66-99.
[35]
Shim, J.; Kim, H. J.; Kim, B. G.; Kim, Y. S.; Kim, D. G.; Lee, J. C. 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries. Energy Environ. Sci. 2017, 10, 1911-1916.
[36]
Fan, Y.; Yang, Z.; Hua, W. X.; Liu, D.; Tao, T.; Rahman, M. M.; Lei, W. W.; Huang, S. M.; Chen, Y. Functionalized boron nitride nanosheets/ graphene interlayer for fast and long-life lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602380.
[37]
Fan, Y.; Liu, D.; Rahman, M. M.; Tao, T.; Lei, W. W.; Mateti, S.; Yu, B. Z.; Wang, J. M.; Yang, C.; Chen, Y. Repelling polysulfide ions by boron nitride nanosheet coated separators in lithium-sulfur batteries. ACS Appl. Energy Mater. 2019, 2, 2620-2628.
[38]
Zhang, J.; Ma, W. Z.; Feng, Z. Y.; Wu, F. F.; Wei, D. H.; Xi, B. J.; Xiong, S. L. P-doped BN nanosheets decorated graphene as the functional interlayer for Li-S batteries. J. Energy Chem. 2019, 39, 54-60.
[39]
Wu, J. Y.; Li, X. W.; Rao, Z. X.; Xu, X. N.; Cheng, Z. X.; Liao, Y. Q.; Yuan, L. X.; Xie, X. L.; Li, Z.; Huang, Y. H. Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes. Nano Energy 2020, 72, 104725.
[40]
Pilli, S.; Bhunia, P.; Yan, S.; LeBlanc, R. J.; Tyagi, R. D.; Surampalli, R. Y. Ultrasonic pretreatment of sludge: A review. Ultrason. Sonochem. 2011, 18, 1-18.
[41]
Ciesielski, A.; Samori, P. Supramolecular approaches to graphene: From self-assembly to molecule-assisted liquid-phase exfoliation. Adv. Mater. 2016, 28, 6030-6051.
[42]
Leong, T.; Ashokkumar, M.; Kentish, S. The fundamentals of power ultrasound-a review. Acoust. Aust. 2011, 39, 54-63.
[43]
Tezel, A.; Sens, A.; Mitragotri, S. Investigations of the role of cavitation in low-frequency sonophoresis using acoustic spectroscopy. J. Pharm. Sci. 2002, 91, 444-453.
[44]
Zhao, S.; Xie, S. C.; Zhao, Z.; Zhang, J. L.; Li, L.; Xin, Z. X. Green and high-efficiency production of graphene by tannic acid-assisted exfoliation of graphite in water. ACS Sustainable Chem. Eng. 2018, 6, 7652-7661.
[45]
Cui, J.; Song, Z. X.; Xin, L. X.; Zhao, S.; Yan, Y. H.; Liu, G. Y. Exfoliation of graphite to few-layer graphene in aqueous media with vinylimidazole-based polymer as high-performance stabilizer. Carbon 2016, 99, 249-260.
[46]
Varoon, K.; Zhang, X. Y.; Elyassi, B.; Brewer, D. D.; Gettel, M.; Kumar, S.; Lee, J. A.; Maheshwari, S.; Mittal, A.; Sung, C. Y. et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 2011, 334, 72-75.
[47]
Zhou, K. G.; Mao, N. N.; Wang, H. X.; Peng, Y.; Zhang, H. L. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem., Int. Ed. 2011, 50, 10839-10842.
[48]
Deshmukh, A. R.; Jeong, J. W.; Lee, S. J.; Park, G. U.; Kim, B. S. Ultrasound-assisted facile green synthesis of hexagonal boron nitride nanosheets and their applications. ACS Sustainable Chem. Eng. 2019, 7, 17114-17125.
[49]
Wang, X. W.; Wu, P. Y. Aqueous phase exfoliation of two-dimensional materials assisted by thermoresponsive polymeric ionic liquid and their applications in stimuli-responsive hydrogels and highly thermally conductive films. ACS Appl. Mater. Interfaces 2018, 10, 2504-2514.
[50]
Cao, L.; Emami, S.; Lafdi, K. Large-scale exfoliation of hexagonal boron nitride nanosheets in liquid phase. Mater. Express 2014, 4, 165-171.
[51]
Wang, Y.; Shi, Z. X.; Yin, J. Boron nitridenanosheets: Large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole. J. Mater. Chem. 2011, 21, 11371-11377.
[52]
Lin, Y.; Williams, T. V.; Xu, T. B.; Cao, W.; Elsayed-Ali, H. E.; Connell, J. W. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: Critical role of water. J. Phys. Chem. C 2011, 115, 2679-2685.
[53]
Zhi, C. Y.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg, D. Large- scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 2009, 21, 2889-2893.
[54]
Posudievsky, O. Y.; Khazieieva, O. A.; Cherepanov, V. V.; Dovbeshko, G. I.; Koshechko, V. G.; Pokhodenko, V. D. Efficient dispersant-free liquid exfoliation down to the graphene-like state of solvent-free mechanochemically delaminated bulk hexagonal boron nitride. RSC Adv. 2016, 6, 47112-47119.
[55]
Wang, X. B.; Yang, Y. F.; Jiang, G. D.; Yuan, Z. W.; Yuan, S. D. A facile synthesis of boron nitride nanosheets and their potential application in dye adsorption. Diam. Relat. Mater. 2018, 81, 89-95.
[56]
Du, M.; Wu, Y. Z.; Hao, X. P. A facile chemical exfoliation method to obtain large size boron nitride nanosheets. CrystEngComm 2013, 15, 1782-1786.
[57]
Fan, D. L.; Feng, J.; Liu, J.; Gao, T. Y.; Ye, Z. X.; Chen, M.; Lv, X. M. Hexagonal boron nitride nanosheets exfoliated by sodium hypochlorite ball mill and their potential application in catalysis. Ceram. Int. 2016, 42, 7155-7163.
[58]
Ghazi, Z. A.; He, X.; Khattak, A. M.; Khan, N. A.; Liang, B.; Iqbal, A.; Wang, J. X.; Sin, H.; Li, L. S.; Tang, Z. Y. MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606817.
[59]
Wang, T. S.; Liu, X. B.; Zhao, X. D.; He, P. G.; Nan, C. W.; Fan, L. Z. Regulating uniform Li plating/stripping via dual-conductive metal- organic frameworks for high-rate lithium metal batteries. Adv. Funct. Mater. 2020, 30, 2000786.
File
12274_2020_3245_MOESM1_ESM.pdf (3.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 October 2020
Revised: 12 November 2020
Accepted: 14 November 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51877132).

Return