Journal Home > Volume 14 , Issue 7

The oxidation of hydrocarbons to produce high value-added compounds (ketones or alcohols) using oxygen in air as the only oxidant is an efficient synthetic strategy from both environmental and economic views. Herein, we successfully synthesized cobalt single atom site catalysts (Co SACs) with high metal loading of 23.58 wt.% supported on carbon nitride (CN), which showed excellent catalytic properties for oxidation of ethylbenzene in air. Moreover, Co SACs show a much higher turn-over frequency (19.6 h-1) than other reported non-noble catalysts under the same condition. Comparatively, the as-obtained nanosized or homogenous Co catalysts are inert to this reaction. Co SACs also exhibit high selectivity (97%) and stability (unchanged after five runs) in this reaction. DFT calculations reveal that Co SACs show a low energy barrier in the first elementary step and a high resistance to water, which result in the robust catalytic performance for this reaction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene

Show Author's information Yu Xiong1,2,§Wenming Sun3,§Yunhu Han4,§Pingyu Xin2Xusheng Zheng5Wensheng Yan5Juncai Dong6Jian Zhang2Dingsheng Wang2( )Yadong Li2
Department of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
China College of Science, China Agricultural University, Beijing 100193, China
Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100084, China

§ Yu Xiong, Wenming Sun, and Yunhu Han contributed equally to this work.

Abstract

The oxidation of hydrocarbons to produce high value-added compounds (ketones or alcohols) using oxygen in air as the only oxidant is an efficient synthetic strategy from both environmental and economic views. Herein, we successfully synthesized cobalt single atom site catalysts (Co SACs) with high metal loading of 23.58 wt.% supported on carbon nitride (CN), which showed excellent catalytic properties for oxidation of ethylbenzene in air. Moreover, Co SACs show a much higher turn-over frequency (19.6 h-1) than other reported non-noble catalysts under the same condition. Comparatively, the as-obtained nanosized or homogenous Co catalysts are inert to this reaction. Co SACs also exhibit high selectivity (97%) and stability (unchanged after five runs) in this reaction. DFT calculations reveal that Co SACs show a low energy barrier in the first elementary step and a high resistance to water, which result in the robust catalytic performance for this reaction.

Keywords: heterogeneous catalysts, single atom site, high-loading catalysts, ethylbenzene oxidation

References(57)

[1]
Chu, L. L.; Lipshultz, J. M.; MacMillan, D. W. C. Merging photoredox and nickel catalysis: The direct synthesis of ketones by the decarboxylative arylation of α-Oxo acids. Angew. Chem., Int. Ed. 2015, 54, 7929-7933.
[2]
Lesieur, M.; Genicot, C.; Pasau, P. Development of a flow photochemical aerobic oxidation of benzylic C-H bonds. Org. Lett. 2018, 20, 1987-1990.
[3]
Clark, W. M.; Tickner-Eldridge, A. M.; Huang, G. K.; Pridgen, L. N.; Olsen, M. A.; Mills, R. J.; Lantos, I.; Baine, N. H. A Catalytic enantioselective synthesis of the endothelin receptor antagonists SB-209670 and SB-217242. A base-catalyzed stereospecific formal 1, 3-hydrogen transfer of a chiral 3-arylindenol. J. Am. Soc. Chem. 1998, 120, 4550-4551.
[4]
Jana, S. K.; Wu, P.; Tatsumi, T. NiAl hydrotalcite as an efficient and environmentally friendly solid catalyst for solvent-free liquid-phase selective oxidation of ethylbenzene to acetophenone with 1 atm of molecular oxygen. J. Catal. 2006, 240, 268-274.
[5]
Zhang, P. F.; Lu, H. F.; Zhou, Y.; Zhang, L.; Wu, Z. L.; Yang, S. Z.; Shi, H. L.; Zhu, Q. L.; Chen, Y. F.; Dai, S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nat. Commun. 2015, 6, 8446.
[6]
Wang, L.; Zhu, Y. H.; Wang, J. Q.; Liu, F. D.; Huang, J. F.; Meng, X. J.; Basset, J. M.; Han, Y.; Xiao, F. S. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon- hydrogen bonds. Nat. Commun. 2015, 6, 6957.
[7]
Zhang, P. F.; Gong, Y. T.; Li, H. R.; Chen, Z. R.; Wang, Y. Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose. Nat. Commun. 2013, 4, 1593.
[8]
Biswas, R.; Das, S. K.; Bhaduri, S. N.; Bhaumik, A.; Biswas, P. AgNPs Immobilized over functionalized 2D hexagonal SBA-15 for catalytic C-H oxidation of hydrocarbons with molecular oxygen under solvent-free conditions. ACS Sustainable Chem. Eng. 2020, 8, 5856-5867.
[9]
Kojima, T.; Nakayama, K.; Ikemura, K.; Ogura, T.; Fukuzumi, S. Formation of a ruthenium(IV)-Oxo complex by electron-transfer oxidation of a coordinatively saturated ruthenium(II) complex and detection of oxygen-rebound intermediates in C-H bond oxygenation. J. Am. Chem. Soc. 2011, 133, 11692-11700.
[10]
Stubbs, A. W.; Dincă, M. Selective oxidation of C-H bonds through a manganese(III) hydroperoxo in MnII-Exchanged CFA-1. Inorg. Chem. 2019, 58, 13221-13228.
[11]
Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.
[12]
Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Wu, L. P.; Ma, L.; Li, T. Y.; Pang, Z. Q.; Jiao, M. L.; Liang, Z. Q.; Gao, J. L. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 2019, 14, 851-857.
[13]
Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 2003300.
[14]
Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2020, 2000051.
[15]
Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651-10657.
[16]
Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443-5450.
[17]
Sun, T. T.; Li, Y. L.; Cui, T. T.; Xu, L. B.; Wang, Y. G.; Chen, W. X.; Zhang, P. P.; Zheng, T. Y.; Fu, X. Z.; Zhang, S. L. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206-6214.
[18]
Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to Formate. Angew. Chem., Int. Ed. 2020, .
[19]
Tian, S.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2020, .
[20]
Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856-1866.
[21]
Xiong, Y.; Sun, W. M.; Xin, P. Y.; Chen, W. X.; Zheng, X. S.; Yan, W. S.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Wang, D. S. et al. Gram-scale synthesis of high-loading single-atomic-site Fe catalysts for effective epoxidation of styrene. Adv. Mater. 2020, 32, 2000896.
[22]
Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082-3087.
[23]
Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[24]
Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34-59.
[25]
Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165-3182.
[26]
Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density of metal-organic frameworks-derived Co single- atom sites to enhance oxygen reduction performance. Angew. Chem., Int. Ed. 2020, .
[27]
Cui, X. J.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 2018, 1, 385-397.
[28]
Mao, J. J.; He, C. T.; Pei, J. J.; Liu, Y.; Li, J.; Chen, W. X.; He, D. S.; Wang, D. S.; Li, Y. D. Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442-3448.
[29]
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[30]
Zhang, T.; Zhang, D.; Han, X. H.; Dong, T.; Guo, X. W.; Song, C. S.; Si, R.; Liu, W.; Liu, Y. F.; Zhao, Z. K. Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu-N3 sites for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936-16940.
[31]
Li, J. K.; Pršlja, P.; Shinagawa, T.; Fernández, A. J. M.; Krumeich, F.; Artyushkova, K.; Atanassov, P.; Zitolo, A.; Zhou, Y. C.; García- Muelas, R. et al. Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS Catal. 2019, 9, 10426-10439.
[32]
Cao, Y. J.; Chen, S.; Luo, Q. Q.; Yan, H.; Lin, Y.; Liu, W.; Cao, L. L.; Lu, J. L.; Yang, J. L.; Yao, T. et al. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew. Chem., Int. Ed. 2017, 56, 12191-12196.
[33]
Gong, W. B.; Yuan, Q. L.; Chen, C.; Lv, Y.; Lin, Y.; Liang, C. H.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Liberating N-CNTs confined highly dispersed Co-Nx sites for selective hydrogenation of quinolines. Adv. Mater. 2019, 31, 1906051.
[34]
Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431-8439.
[35]
Ye, M. Y.; Li, S.; Zhao, X. J.; Tarakina, N. V.; Teutloff, C.; Chow, W. Y.; Bittl, R.; Thomas, A. Cobalt-exchanged poly(heptazine imides) as transition metal-Nx electrocatalysts for the oxygen evolution reaction. Adv. Mater. 2020, 32, 1903942.
[36]
Ou H. H.; Wang, D. S.; Li, Y. D. How to select effective electrocatalysts: Nano or single atom? Nano Select 2020, .
[37]
Zhao, Q.; Yao, W. F.; Huang, C. P.; Wu, Q.; Xu, Q. J. Effective and durable Co single atomic Co catalysts for photocatalytic hydrogen production. ACS Appl. Mater. Interfaces. 2017, 9, 42734-42741.
[38]
Zitolo, A.; Ranjbar-Sahraie, N.; Mineva, T.; Li, J. K.; Jia, Q. Y.; Stamatin, S.; Harrington, G. F.; Lyth, S. M.; Krtil, P.; Mukerjee, S. et al. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Commun. 2017, 8, 957.
[39]
Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.
[40]
Yue, X. Y.; Li, X. L.; Wang, W. W.; Chen, D.; Qiu, Q. Q.; Wang, Q. C.; Wu, X. J.; Fu, Z. W.; Shadike, Z.; Yang, X. Q. et al. Wettable carbon felt framework for high loading Li-metal composite anode. Nano Energy 2019, 60, 257-266.
[41]
Zhu, Y. F.; Kong, X.; Yin, J. Q.; You, R.; Zhang, B.; Zheng, H. Y.; Wen, X. D.; Zhu, Y. L.; Li, Y. W. Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. J. Catal. 2017, 353, 315-324.
[42]
Kunwar, D.; Zhou, S. L.; DeLaRiva, A.; Peterson, E. J.; Xiong, H. F.; Pereira-Hernández, X. I.; Purdy, S. C.; ter Veen, R.; Brongersma, H. H.; Miller, J. T. et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 2019, 9, 3978-3990.
[43]
Cao, J. Y.; Du, C.; Wang, S. C.; Mercier, P.; Zhang, X. G.; Yang, H.; Akins, D. L. The production of a high loading of almost monodispersed Pt nanoparticles on single-walled carbon nanotubes for methanol oxidation. Electrochem. Commun. 2007, 9, 735-740.
[44]
Wang, Y. M.; Zou, L. L.; Huang, Q. H.; Zou, Z. Q.; Yang, H. 3D carbon aerogel-supported PtNi intermetallic nanoparticles with high metal loading as a durable oxygen reduction electrocatalyst. Int. J. Hydrogen Energy. 2017, 42, 26695-26703.
[45]
Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800-10805.
[46]
Xu, J.; Zhang, L. W.; Shi, R.; Zhu, Y. F. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 2013, 1, 14766-14772.
[47]
Wu, H. H.; Li, H. B.; Zhao, X. F.; Liu, Q. F.; Wang, J.; Xiao, J. P.; Xie, S. H.; Si, R.; Yang, F.; Miao, S. et al. Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ. Sci. 2016, 9, 3736-3745.
[48]
Khabashesku, V. N.; Zimmerman, J. L.; Margrave, J. L. Powder synthesis and characterization of amorphous carbon nitride. Chem. Mater. 2000, 12, 3264-3270.
[49]
Bertoncello, R.; Bettinelli, M.; Casarin, M.; Gulino, A.; Tondello, E.; Vittadini, A. Hexakis(acetato)oxotetrazinc, a well-tailored molecular model of zinc oxide. An experimental and theoretical investigation of the electronic structure of Zn4O(acetate)6 and ZnO by means of UV and X-ray photoelectron spectroscopies and first principle local density molecular cluster calculations. Inorg. Chem. 1992, 31, 1558-1565.
[50]
Zhou, J. G.; Zhou, X. T.; Li, R. Y.; Sun, X. L.; Ding, Z. F.; Cutler, J.; Sham, T. K. Electronic structure and luminescence center of blue luminescent carbon nanocrystals. Chem. Phys. Lett. 2009, 474, 320-324.
[51]
Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Soc. Chem. 2012, 134, 3517-3523.
[52]
Lv, W. M.; Yang, L.; Fan, B. B.; Zhao, Y.; Chen, Y. F.; Lu, N. Y.; Li, R. F. Silylated MgAl LDHs intercalated with MnO2 nanowires: Highly efficient catalysts for the solvent-free aerobic oxidation of ethylbenzene. Chem. Eng. J. 2015, 263, 309-316.
[53]
Sun, W. Z.; Zhang, S. L.; Qiu, J. F.; Xu, Z. M.; Zhao, L. Modeling the liquid phase autoxidation of cyclohexylbenzene to hydroperoxide. Chem. Eng. Res. Des. 2017, 124, 202-210.
[54]
Clementi, E.; Raimondi, D. L.; Reinhardt, W. P. Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons. J. Chem. Phys. 1967, 47, 1300-1307.
[55]
Devika, S.; Palanichamy, M.; Murugesan, V. Selective oxidation of ethylbenzene over CeAlPO-5. Appl. Catal. A Gener. 2011, 407, 76-84.
[56]
Ricca, C.; Labat, F.; Russo, N.; Adamo, C.; Sicilia, E. Oxidation of ethylbenzene to acetophenone with N-Doped graphene: Insight from theory. J. Phys. Chem. C 2014, 118, 12275-12284.
[57]
Gao, Y. J.; Hu, G.; Zhong, J.; Shi, Z. J.; Zhu, Y. S.; Su, D. S.; Wang, J. G.; Bao, X. H.; Ma, D. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angew. Chem., Int. Ed. 2013, 52, 2109-2113.
File
12274_2020_3244_MOESM1_ESM.pdf (4.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 October 2020
Revised: 10 November 2020
Accepted: 13 November 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2018YFA0702003 and 2016YFA0202801), the National Natural Science Foundation of China (Nos. 21890383, 21671117, 21871159, and 21901135), Science and Technology Key Project of Guangdong Province of China (No. 2020B010188002), Beijing Municipal Science & Technology Commission (No. Z191100007219003) and China Postdoctoral Science Foundation (No. 2018M640114). We thank the BL11B station in Shanghai Synchrotron Radiation Facility (SSRF) for XAFS measurement. We appreciate the BL12B station of National Synchrotron Radiation Laboratory (NRSL) for NEXAFS measurement.

Return