Journal Home > Volume 14 , Issue 5

Interferon (IFN) responses are central to host defense against coronavirus and other virus infections. Manganese (Mn) is capable of inducing IFN production, but its applications are limited by nonspecific distributions and neurotoxicity. Here, we exploit chemical engineering strategy to fabricate a nanodepot of manganese (nanoMn) based on Mn2+. Compared with free Mn2+, nanoMn enhances cellular uptake and persistent release of Mn2+ in a pH-sensitive manner, thus strengthening IFN response and eliciting broad-spectrum antiviral effects in vitro and in vivo. Preferentially phagocytosed by macrophages, nanoMn promotes M1 macrophage polarization and recruits monocytes into inflammatory foci, eventually augmenting antiviral immunity and ameliorating coronavirus-induced tissue damage. Besides, nanoMn can also potentiate the development of virus-specific memory T cells and host adaptive immunity through facilitating antigen presentation, suggesting its potential as a vaccine adjuvant. Pharmacokinetic and safety evaluations uncover that nanoMn treatment hardly induces neuroinflammation through limiting neuronal accumulation of manganese. Therefore, nanoMn offers a simple, safe, and robust nanoparticle-based strategy against coronavirus.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Manganese nanodepot augments host immune response against coronavirus

Show Author's information Yizhe Sun1Yue Yin1Lidong Gong1Zichao Liang1Chuanda Zhu1Caixia Ren2Nan Zheng3Qiang Zhang4Haibin Liu5Wei Liu5Fuping You1Dan Lu1( )Zhiqiang Lin1( )
Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
Department of Human Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Drug Clinical Trial Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
Department of General Surgery, Xinjiang Production and Construction Corps Hospital, Urumchi, Xinjiang Uygur Autonomous Region 830002, China

Abstract

Interferon (IFN) responses are central to host defense against coronavirus and other virus infections. Manganese (Mn) is capable of inducing IFN production, but its applications are limited by nonspecific distributions and neurotoxicity. Here, we exploit chemical engineering strategy to fabricate a nanodepot of manganese (nanoMn) based on Mn2+. Compared with free Mn2+, nanoMn enhances cellular uptake and persistent release of Mn2+ in a pH-sensitive manner, thus strengthening IFN response and eliciting broad-spectrum antiviral effects in vitro and in vivo. Preferentially phagocytosed by macrophages, nanoMn promotes M1 macrophage polarization and recruits monocytes into inflammatory foci, eventually augmenting antiviral immunity and ameliorating coronavirus-induced tissue damage. Besides, nanoMn can also potentiate the development of virus-specific memory T cells and host adaptive immunity through facilitating antigen presentation, suggesting its potential as a vaccine adjuvant. Pharmacokinetic and safety evaluations uncover that nanoMn treatment hardly induces neuroinflammation through limiting neuronal accumulation of manganese. Therefore, nanoMn offers a simple, safe, and robust nanoparticle-based strategy against coronavirus.

Keywords: coronavirus, interferon, manganese nanodepot (nanoMn), macrophage polarization, vaccine adjuvant

References(36)

[1]
W. J. Guan,; W. H. Liang,; Y. Zhao,; H. R. Liang,; Z. S. Chen,; Y. M. Li,; X. Q. Liu,; R. C. Chen,; C. L. Tang,; T. Wang, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur. Respir. J. 2020, 55, 2000547.
[2]
W. J. Guan,; Z. Y. Ni,; Y. Hu,; W. H. Liang,; C. Q. Ou,; J. X. He,; L. Liu,; H. Shan,; C. L. Lei,; D. S. C. Hui, et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708-1720.
[3]
G. D. Li,; E. De Clercq, Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov. 2020, 19, 149-150.
[4]
M. Pal,; G. Berhanu,; C. Desalegn,; V. Kandi, Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus 2020, 12, e7423.
[5]
L. Bao,; W. Deng,; B. Y. Huang,; H. Gao,; J. N. Liu,; L. L. Ren,; Q. Wei,; P. Yu,; Y. F. Xu,; F. F. Qi, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 2020, 583, 830-833.
[6]
R. L. Graham,; E. F. Donaldson,; R. S. Baric, A decade after SARS: Strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 2013, 11, 836-848.
[7]
K. D. Kim,; J. Zhao,; S. Auh,; X. M. Yang,; P. S. Du,; H. Tang,; Y. X. Fu, Adaptive immune cells temper initial innate responses. Nat. Med. 2007, 13, 1248-1252.
[8]
Z. S. Yang,; J. Du,; G. Chen,; J. Zhao,; X. M. Yang,; L. S. Su,; G. H. Cheng,; H. Tang, Coronavirus MHV-A59 infects the lung and causes severe pneumonia in C57BL/6 mice. Virol. Sin. 2014, 29, 393-402.
[9]
S. Q. Ma,; J. Zhang,; Y. S. Wang,; J. Xia,; P. Liu,; H. Luo,; M. Y. Wang, Glucocorticoid therapy delays the clearance of SARS-CoV-2 RNA in an asymptomatic COVID-19 patient. J. Med. Virol. 2020, 92, 2396-2397.
[10]
S. Shalhoub, Interferon beta-1b for COVID-19. Lancet 2020, 395, 1670-1671.
[11]
G. Antonelli,; O. Turriziani,; A. Pierangeli,; G. d'Ettorre,; G. Galardo,; F. Pugliese,; C. M. Mastroianni,; C. Scagnolari, Type I interferons can be detected in respiratory swabs from SARS-Cov-2 infected patients. J. Clin. Virol. 2020, 128, 104450.
[12]
M. Haji Abdolvahab,; M. R. K. Mofrad,; H. Schellekens, Chapter eight - interferon beta: From molecular level to therapeutic effects. Int. Rev. Cell Mol. Biol. 2016, 326, 343-372.
[13]
H. Kumar,; T. Kawai,; S. Akira, Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2011, 30, 16-34.
[14]
C. G. Wang,; Y. K. Guan,; M. Z. Lv,; R. Zhang,; Z. Y. Guo,; X. M. Wei,; X. M. Du,; J. Yang,; T. Li,; Y. Wan, et al. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 2018, 48, 675-687.e7.
[15]
T. V. Peres,; M. R. C. Schettinger,; P. Chen,; F. Carvalho,; D. S. Avila,; A. B. Bowman,; M. Aschner, “Manganese-induced neurotoxicity: A review of its behavioral consequences and neuroprotective strategies”. BMC Pharmacol. Toxicol. 2016, 17, 57.
[16]
R. B. Tjalkens,; K. A. Popichak,; K. A. Kirkley, Inflammatory activation of microglia and astrocytes in manganese neurotoxicity. In Neurotoxicity of Metals; M. Aschner,; L. G. Costa,, Eds.; Springer: Cham, 2017; pp 159-181.
DOI
[17]
A. L. Blasius,; B. Beutler, Intracellular toll-like receptors. Immunity 2010, 32, 305-315.
[18]
X. Y. Miao,; X. F. Leng,; Q. Zhang, The current state of nanoparticle-induced macrophage polarization and reprogramming research. Int. J. Mol. Sci. 2017, 18, 336.
[19]
T. R. O’Brien,; D. L. Thomas,; S. S. Jackson,; L. Prokunina-Olsson,; R. P. Donnelly,; R. Hartmann, Weak induction of interferon expression by severe acute respiratory syndrome coronavirus 2 supports clinical trials of interferon-λ to treat early coronavirus disease 2019. Clin. Infect. Dis. 2020, 71, 1410-1412.
[20]
F. McNab,; K. Mayer-Barber,; A. Sher,; A. Wack,; A. O'Garra, Type I interferons in infectious disease. Nat. Rev. Immunol. 2015, 15, 87-103.
[21]
A. S. Poltavets,; P. A. Vishnyakova,; A. V. Elchaninov,; G. T. Sukhikh,; T. K. Fatkhudinov, Macrophage modification strategies for efficient cell therapy. Cells 2020, 9, 1535.
[22]
H. J. Yu,; Y. L. Zou,; Y. G. Wang,; X. N. Huang,; G. Huang,; B. D. Sumer,; D. A. Boothman,; J. M. Gao, Overcoming endosomal barrier by amphotericin B-loaded dual pH-responsive PDMA-b-PDPA micelleplexes for siRNA delivery. ACS Nano 2011, 5, 9246-9255.
[23]
S. A. Smith,; L. I. Selby,; A. P. R. Johnston,; G. K. Such, The endosomal escape of nanoparticles: Toward more efficient cellular delivery. Bioconjugate Chem. 2019, 30, 263-272.
[24]
W. Lin,; D. R. Vann,; P. T. Doulias,; T. Wang,; G. Landesberg,; X. L. Li,; E. Ricciotti,; R. Scalia,; M. He,; N. J. Hand, et al. Hepatic metal ion transporter ZIP8 regulates manganese homeostasis and manganese-dependent enzyme activity. J. Clin. Invest. 2017, 127, 2407-2417.
[25]
K. J. Horning,; S. W. Caito,; K. G. Tipps,; A. B. Bowman,; M. Aschner, Manganese is essential for neuronal health. Annu. Rev. Nutr. 2015, 35, 71-108.
[26]
F. Ginhoux,; S. Jung, Monocytes and macrophages: Developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 2014, 14, 392-404.
[27]
C. Shi,; E. G. Pamer, Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 2011, 11, 762-774.
[28]
M. Catanzaro,; F. Fagiani,; M. Racchi,; E. Corsini,; S. Govoni,; C. Lanni, Immune response in COVID-19: Addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal. Transduct. Target. Ther. 2020, 5, 84.
[29]
F. Stauffer,; T. El-Bacha,; A. Da Poian, Advances in the development of inactivated virus vaccines. Recent Patents Anti-Infect. Drug Discov. 2006, 1, 291-296.
[30]
S. G. Reed,; M. T. Orr,; C. B. Fox, Key roles of adjuvants in modern vaccines. Nat. Med. 2013, 19, 1597-1608.
[31]
R. H. Griesenauer,; M. S. Kinch, An overview of FDA-approved vaccines & their innovators. Expert Rev. Vaccines 2017, 16, 1253-1266.
[32]
H. HogenEsch,; D. T. O'Hagan,; C. B. Fox, Optimizing the utilization of aluminum adjuvants in vaccines: You might just get what you want. NPJ Vaccines 2018, 3, 51.
[33]
J. R. Mascola,; A. S. Fauci, Novel vaccine technologies for the 21st century. Nat. Rev. Immunol. 2020, 20, 87-88.
[34]
X. Li,; X. P. Wang,; A. Ito, Tailoring inorganic nanoadjuvants towards next-generation vaccines. Chem. Soc. Rev. 2018, 47, 4954-4980.
[35]
J. O. G. Karlsson,; L. J. Ignarro,; I. Lundström,; P. Jynge,; T. Almén, Calmangafodipir [Ca4Mn(DPDP)5], mangafodipir (MnDPDP) and MnPLED with special reference to their SOD mimetic and therapeutic properties. Drug Discov. Today 2015, 20, 411-421.
[36]
M. Z. Lv,; M. X. Chen,; R. Zhang,; W. Zhang,; C. G. Wang,; Y. Zhang,; X. M. Wei,; Y. K. Guan,; J. J. Liu,; K. C. Feng, et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 2020, 30, 966-979.
File
12274_2020_3243_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 September 2020
Revised: 03 November 2020
Accepted: 14 November 2020
Published: 29 December 2020
Issue date: May 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by grants including the National Natural Science Foundation of China (Nos. 82022032 and 81991505 to D. L.), Clinical Medicine Plus X-Young Scholars Project, Peking University, the fundamental Research funds for the Central Universities (No. PKU2020LCXQ014 to D. L.), the Fundamental Research Funds for the Central Universities (No. BMU2018YJ003 to D. L., No. BMU2017YJ001 to Z. L.), and the Foundation from Science and Technology Bureau of Xinjiang production and Construction Corps (No. 2019BC006 to W. L.).

Return