Journal Home > Volume 14 , Issue 7

Stimuli-responsive delivery systems hold promise in cancer treatments. However, their application potential has been limited due to undesirable drug leaking during blood circulation and inefficient therapeutic efficacy in tumors, resulting in undesirable therapeutic outcomes. Herein, we have developed a novel redox-sensitive pegylated phospholipid, termed as DOPE-SS-PEG, which can form a glutathione (GSH)-triggered precision explosive system (GPS) for simultaneously improving circulation stability, tumor specificity, and chemosensitivity, leading to explosive anticancer effects. GPS is constructed of liposomal doxorubicin (DOX) functionalized with DOPE-SS-PEG and MnO2 nanoparticles, which can protect liposome structure in the presence of serum GSH (20 μM), whereas converts to cationic liposome in response to intracellular GSH (10 mM), thereby enhancing circulation stability, tumor specificity, endosomal escape, and cytoplasmic delivery. Importantly, GPS can not only generate oxygen to relieve hypoxia and consequently enhance chemosensitivity, but quench GSH antioxidability to elevate the accruement of intracellular reactive oxygen species (ROS), leading to an explosion of oxidative stress induced cell injury. Particularly, in vivo studies show that GPS selectively accumulates in tumor tissues, effectively inhibits tumor growth, exhibits minimal systemic adverse effects, and consequently prolongs the survival time of tumor-bearing mice. Therefore, GPS is a unique stimuli-responsive treatment with programmed and on-demand drug delivery, as well as explosive therapeutic efficacy, and provides an intelligent anticancer treatment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A glutathione-triggered precision explosive system for improving tumor chemosensitivity

Show Author's information Yuanyuan Nie§Yurui Xu§( )Ya Gao§Jielei HeLei SunJianmei ChenYushuang Cui( )Haixiong Ge( )Xinghai Ning( )
National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China

§ Yuanyuan Nie, Yurui Xu, and Ya Gao contributed equally to this work.

Abstract

Stimuli-responsive delivery systems hold promise in cancer treatments. However, their application potential has been limited due to undesirable drug leaking during blood circulation and inefficient therapeutic efficacy in tumors, resulting in undesirable therapeutic outcomes. Herein, we have developed a novel redox-sensitive pegylated phospholipid, termed as DOPE-SS-PEG, which can form a glutathione (GSH)-triggered precision explosive system (GPS) for simultaneously improving circulation stability, tumor specificity, and chemosensitivity, leading to explosive anticancer effects. GPS is constructed of liposomal doxorubicin (DOX) functionalized with DOPE-SS-PEG and MnO2 nanoparticles, which can protect liposome structure in the presence of serum GSH (20 μM), whereas converts to cationic liposome in response to intracellular GSH (10 mM), thereby enhancing circulation stability, tumor specificity, endosomal escape, and cytoplasmic delivery. Importantly, GPS can not only generate oxygen to relieve hypoxia and consequently enhance chemosensitivity, but quench GSH antioxidability to elevate the accruement of intracellular reactive oxygen species (ROS), leading to an explosion of oxidative stress induced cell injury. Particularly, in vivo studies show that GPS selectively accumulates in tumor tissues, effectively inhibits tumor growth, exhibits minimal systemic adverse effects, and consequently prolongs the survival time of tumor-bearing mice. Therefore, GPS is a unique stimuli-responsive treatment with programmed and on-demand drug delivery, as well as explosive therapeutic efficacy, and provides an intelligent anticancer treatment.

Keywords: synergistic effects, glutathione-responsive, serum stability, selective intracellular release, explosive reactive oxygen species (ROS) production, enhanced anticancer effects

References(43)

[1]
Zhang, X.; Chen, L. F.; Lim, K. H.; Gonuguntla, S.; Lim, K. W.; Pranantyo, D.; Yong, W. P.; Yam, W. J. T.; Low, Z.; Teo, W. J. et al. The pathway to intelligence: Using stimuli-responsive materials as building blocks for constructing smart and functional systems. Adv. Mater. 2019, 31, 1804540.
[2]
Kauscher, U.; Holme, M. N.; Björnmalm, M.; Stevens, M. M. Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Adv. Drug Deliv. Rev. 2019, 138, 259-275.
[3]
Lv, Y. Q.; Xu, C. R.; Zhao, X. M.; Lin, C. S.; Yang, X.; Xin, X. F.; Zhang, L.; Qin, C.; Han, X. P.; Yang, L. et al. Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells. ACS Nano 2018, 12, 1519-1536.
[4]
Zhu, Y. Q.; Yu, J.; Meng, F. H.; Deng, C.; Cheng, R.; Zhang, J.; Feijen, J.; Zhong, Z. Y. Highly efficacious and specific anti-glioma chemotherapy by tandem nanomicelles co-functionalized with brain tumor-targeting and cell-penetrating peptides. J. Control. Release 2018, 278, 1-8.
[5]
Jia, X. B.; He, J. P.; Shen, L. Y.; Chen, J. Z.; Wei, Z. Y.; Qin, X.; Niu, D. C.; Li, Y. S.; Shi, J. L. Gradient redox-responsive and two-stage rocket-mimetic drug delivery system for improved tumor accumulation and safe chemotherapy. Nano Lett. 2019, 19, 8690-8700.
[6]
Laskar, P.; Somani, S.; Campbell, S. J.; Mullin, M.; Keating, P.; Tate, R. J.; Irving, C.; Leung, H. Y.; Dufès, C. Camptothecin-based dendrimersomes for gene delivery and redox-responsive drug delivery to cancer cells. Nanoscale 2019, 11, 20058-20071.
[7]
Lim, W. Q.; Phua, S. Z. F.; Zhao, Y. L. Redox-responsive polymeric nanocomplex for delivery of cytotoxic protein and chemotherapeutics. ACS Appl. Mater. Interfaces 2019, 11, 31638-31648.
[8]
Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A. L.; Pronzato, M. A.; Marinari, U. M.; Domenicotti, C. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev. 2013, 2013, 972913.
[9]
Cheng, Y.; Ji, Y. H. Mitochondria-targeting nanomedicine self-assembled from GSH-responsive paclitaxel-ss-berberine conjugate for synergetic cancer treatment with enhanced cytotoxicity. J. Control. Release 2020, 318, 38-49.
[10]
Li, S. L.; Saw, P. E.; Lin, C. H.; Nie, Y.; Tao, W.; Farokhzad, O. C.; Zhang, L.; Xu, X. D. Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy. Biomaterials 2020, 234, 119760.
[11]
Shen, W.; Liu, W. G.; Yang, H. L.; Zhang, P.; Xiao, C. S.; Chen, X. S. A glutathione-responsive sulfur dioxide polymer prodrug as a nanocarrier for combating drug-resistance in cancer chemotherapy. Biomaterials 2018, 178, 706-719.
[12]
Wong, H. H.; Halford, S. Dose-limiting toxicity and maximum tolerated dose: Still fit for purpose? Lancet Oncol. 2015, 16, 1287-1288.
[13]
Min, H.; Wang, J.; Qi, Y. Q.; Zhang, Y. L.; Han, X. X.; Xu, Y.; Xu, J. C.; Li, Y.; Chen, L.; Cheng, K. M. et al. Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Adv. Mater. 2019, 31, 1808200.
[14]
Feng, L. L.; Xie, R.; Wang, C. Q.; Gai, S. L.; He, F.; Yang, D.; Yang, P. P.; Lin, J. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano 2018, 12, 11000-11012.
[15]
Wang, Z. Z.; Zhang, Y.; Ju, E. G.; Liu, Z.; Cao, F. F.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 2018, 9, 3334.
[16]
Zhang, M. Y.; Liu, X. J.; Luo, Q.; Wang, Q.; Zhao, L. J.; Deng, G. Y.; Ge, R. B.; Zhang, L.; Hu, J. Q.; Lu, J. Tumor environment responsive degradable CuS@mSiO2@MnO2/DOX for MRI guided synergistic chemo-photothermal therapy and chemodynamic therapy. Chem. Eng. J. 2020, 389, 124450.
[17]
Wang, S. Q.; Yang, L. T.; Cho, H. Y.; Dean Chueng, S. T.; Zhang, H. P.; Zhang, Q. Y.; Lee, K. B. Programmed degradation of a hierarchical nanoparticle with redox and light responsivity for self-activated photo-chemical enhanced chemodynamic therapy. Biomaterials 2019, 224, 119498.
[18]
Zhang, M.; Xing, L.; Ke, H. T.; He, Y. J.; Cui, P. F.; Zhu, Y.; Jiang, G.; Qiao, J. B.; Lu, N.; Chen, H. B. et al. MnO2-based nanoplatform serves as drug vehicle and MRI contrast agent for cancer theranostics. ACS Appl. Mater. Interfaces 2017, 9, 11337-11344.
[19]
Ding, B. B.; Zheng, P.; Ma, P. A.; Lin, J. Manganese oxide nanomaterials: Synthesis, properties, and theranostic applications. Adv. Mater. 2020, 32, 1905823.
[20]
Yang, G. B.; Xu, L. G.; Chao, Y.; Xu, J.; Sun, X. Q.; Wu, Y. F.; Peng, R.; Liu, Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017, 8, 902.
[21]
Hu, D. R.; Chen, L. J.; Qu, Y.; Peng, J. R.; Chu, B. Y.; Shi, K.; Hao, Y.; Zhong, L.; Wang, M. Y.; Qian, Z. Y. Oxygen-generating hybrid polymeric nanoparticles with encapsulated doxorubicin and chlorin e6 for trimodal imaging-guided combined chemo-photodynamic therapy. Theranostics 2018, 8, 1558-1574.
[22]
Abdelbary, A. A.; Li, X. L.; El-Nabarawi, M.; Elassasy, A.; Jasti, B. Effect of fixed aqueous layer thickness of polymeric stabilizers on zeta potential and stability of aripiprazole nanosuspensions. Pharm. Dev. Technol. 2013, 18, 730-735.
[23]
Shimada, K.; Miyagishima, A.; Sadzuka, Y.; Nozawa, Y.; Mochizuki, Y.; Ohshima, H.; Hirota, S. Determination of the thickness of the fixed aqueous layer around polyethyleneglycol-coated liposomes. J. Drug Target. 1995, 3, 283-289.
[24]
Chi, Y. Y.; Yin, X. L.; Sun, K. X.; Feng, S. S.; Liu, J. H.; Chen, D. Q.; Guo, C. Y.; Wu, Z. M. Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. J. Control. Release 2017, 261, 113-125.
[25]
Baldwin, A. D.; Kiick, K. L. Reversible maleimide-thiol adducts yield glutathione-sensitive poly(ethylene glycol)-heparin hydrogels. Polym. Chem. 2013, 4, 133-143.
[26]
Ma, N.; Li, Y.; Xu, H. P.; Wang, Z. Q.; Zhang, X. Dual redox responsive assemblies formed from diselenide block copolymers. J. Am. Chem. Soc. 2010, 132, 442-443.
[27]
Yang, Y.; Zhu, H. K.; Wang, J.; Fang, Q.; Peng, Z. P. Enzymatically disulfide-crosslinked chitosan/hyaluronic acid layer-by-layer self- assembled microcapsules for redox-responsive controlled release of protein. ACS Appl. Mater. Interfaces 2018, 10, 33493-33506.
[28]
Ahmed, K. S.; Hussein, S. A.; Ali, A. H.; Korma, S. A.; Qiu, L. P.; Chen, J. H. Liposome: Composition, characterisation, preparation, and recent innovation in clinical applications. J. Drug Target. 2019, 27, 742-761.
[29]
Huang, H.; Dong, Y.; Zhang, Y. H.; Ru, D.; Wu, Z. H.; Zhang, J. L.; Shen, M.; Duan, Y. R.; Sun, Y. GSH-sensitive Pt(IV) prodrug-loaded phase-transitional nanoparticles with a hybrid lipid-polymer shell for precise theranostics against ovarian cancer. Theranostics 2019, 9, 1047-1065.
[30]
Ichikawa, Y.; Ghanefar, M.; Bayeva, M.; Wu, R. X.; Khechaduri, A.; Prasad, S. V. N.; Mutharasan, R. K.; Naik, T. J.; Ardehali, H. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J. Clin. Invest. 2014, 124, 617-630.
[31]
Jeon, K. H.; Yu, H. V.; Kwon, Y. Hyperactivated m-calpain affects acquisition of doxorubicin resistance in breast cancer cells. Biochim. Biophys. Acta 2018, 1862, 1126-1133.
[32]
Zhang, S.; Liu, X. B.; Bawa-Khalfe, T.; Lu, L. S.; Lyu, Y. L.; Liu, L. F.; Yeh, E. T. H. Identification of the molecular basis of doxorubicin- induced cardiotoxicity. Nat. Med. 2012, 18, 1639-1642.
[33]
Cao, Y. T.; Eble, J. M.; Moon, E.; Yuan, H.; Weitzel, D. H.; Landon, C. D.; Nien, C. Y. C.; Hanna, G.; Rich, J. N.; Provenzale, J. M. et al. Tumor cells upregulate normoxic HIF-1α in response to doxorubicin. Cancer Res. 2013, 73, 6230-6242.
[34]
Mallappa, S.; Neeli, P. K.; Karnewar, S.; Kotamraju, S. Doxorubicin induces prostate cancer drug resistance by upregulation of ABCG4 through GSH depletion and CREB activation: Relevance of statins in chemosensitization. Mol Carcinog 2019, 58, 1118-1133.
[35]
Gao, W. D.; Wang, Z. H.; Lv, L. W.; Yin, D. Y.; Chen, D.; Han, Z. H.; Ma, Y.; Zhang, M.; Yang, M.; Gu, Y. Q. Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics 2016, 6, 1131-1144.
[36]
Wang, X. Y.; Wang, H.; Jiang, K.; Zhang, Y. Y.; Zhan, C. Y.; Ying, M.; Zhang, M. F.; Lu, L. W.; Wang, R. F.; Wang, S. L. et al. Liposomes with cyclic RGD peptide motif triggers acute immune response in mice. J. Control. Release 2019, 293, 201-214.
[37]
Wei, X. L.; Gao, J.; Zhan, C. Y.; Xie, C.; Chai, Z. L.; Ran, D. N.; Ying, M.; Zheng, P.; Lu, W. Y. Liposome-based glioma targeted drug delivery enabled by stable peptide ligands. J. Control. Release 2015, 218, 13-21.
[38]
Straubinger, R. M.; Papahadjopoulos, D.; Hong, K. Endocytosis and intracellular fate of liposomes using Pyranine as a probe. Biochemistry 1990, 29, 4929-4939.
[39]
Lee, S. Y.; Tyler, J. Y.; Kim, S.; Park, K.; Cheng, J. X. FRET imaging reveals different cellular entry routes of self-assembled and disulfide bonded polymeric micelles. Mol. Pharmaceutics 2013, 10, 3497-3506.
[40]
Xu, Y. R.; Asghar, S.; Yang, L.; Li, H. Y.; Wang, Z. L.; Ping, Q. E.; Xiao, Y. Y. Lactoferrin-coated polysaccharide nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG for treating brain glioma. Carbohydr. Polym. 2017, 157, 419-428.
[41]
Giustarini, D.; Dalle-Donne, I.; Milzani, A.; Fanti, P.; Rossi, R. Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nat. Protoc. 2013, 8, 1660-1669.
[42]
Zeng, W.; Liu, P. Y.; Pan, W. M.; Singh, S. R.; Wei, Y. Y. Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett. 2015, 356, 263-267.
[43]
Khan, M. S.; Hwang, J.; Lee, K.; Choi, Y.; Seo, Y.; Jeon, H.; Hong, J. W.; Choi, J. Anti-tumor drug-loaded oxygen nanobubbles for the degradation of hif-1α and the upregulation of reactive oxygen species in tumor cells. Cancers (Basel) 2019, 11, 1464.
File
12274_2020_3238_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 August 2020
Revised: 07 November 2020
Accepted: 14 November 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work were supported by the National Key Research and Development Program of China (No. 2019YFA0802800), the National Key Research and Development Program of China (No. 2018YFB1105400), the National Natural Science Foundation of China (No. 21472090), the Natural Science Foundation of Jiangsu Province (No. BK20180334), the Fundamental Research Funds for Central Universities Nanjing University, the Scientific Research Foundation of Graduate School of Nanjing University (No. 2018CL12), and The Key Research and Development Program of Jiangsu Provincial Department of Science and Technology of China (No. BE2019002).

Return