Journal Home > Volume 14 , Issue 7

Herein, we report the fabrication of Fe3O4@TiO2 nanosheet/Ag/g-C3N4 (Fe3O4@ns-TiO2/Ag/g-C3N4) composite photocatalysts with well-designed hierarchical yolk-shell structure. To endow the composites with fascinating features, multiple functional components are perfectly integrated into the definite structure. The photodegradation experiments of organic pollutants revealed a significant enhancement in photocatalytic activity of developed composites as compared to P25, which is mainly due to the synergetic interaction of the tailored three-dimensional (3D) yolk-shell porous nanostructure, extended sunlight response range, and retarded the recombination probability of photogenerated electrons-holes. More importantly, the hybrid samples exhibited superior magnetic properties due to the magnetic component. The excellent magnetic recyclability and reusability of the photocatalysts are verified by the magnetic hysteresis loop and cyclic photocatalytic degradation experiments, which is significant for the green and sustainable applications of photocatalysts. Considering its remarkable photocatalytic performance and expectant magnetic recyclability, the composite photocatalysts are expected to be a promising candidate to dispose of future environmental issues.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fabrication of magnetically recyclable yolk-shell Fe3O4@TiO2 nanosheet/Ag/g-C3N4 microspheres for enhanced photocatalytic degradation of organic pollutants

Show Author's information Yan Lv1,2,3Lin Yue1,2,3Imran Mahmood Khan1,2,3You Zhou1,2,3Wenbo Cao1,2,3Sobia Niazi1,2,3Zhouping Wang1,2,3,4,5( )
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116024, China

Abstract

Herein, we report the fabrication of Fe3O4@TiO2 nanosheet/Ag/g-C3N4 (Fe3O4@ns-TiO2/Ag/g-C3N4) composite photocatalysts with well-designed hierarchical yolk-shell structure. To endow the composites with fascinating features, multiple functional components are perfectly integrated into the definite structure. The photodegradation experiments of organic pollutants revealed a significant enhancement in photocatalytic activity of developed composites as compared to P25, which is mainly due to the synergetic interaction of the tailored three-dimensional (3D) yolk-shell porous nanostructure, extended sunlight response range, and retarded the recombination probability of photogenerated electrons-holes. More importantly, the hybrid samples exhibited superior magnetic properties due to the magnetic component. The excellent magnetic recyclability and reusability of the photocatalysts are verified by the magnetic hysteresis loop and cyclic photocatalytic degradation experiments, which is significant for the green and sustainable applications of photocatalysts. Considering its remarkable photocatalytic performance and expectant magnetic recyclability, the composite photocatalysts are expected to be a promising candidate to dispose of future environmental issues.

Keywords: g-C3N4, photocatalysis, Ag nanoparticles, magnetic separation, TiO2 nanosheet, hierarchical yolk-shell structure

References(52)

[1]
Luo, J. M.; Zhang, S. Q.; Sun, M.; Yang, L. X.; Luo, S. L.; Crittenden, J. C. A critical review on energy conversion and environmental remediation of photocatalysts with remodeling crystal lattice, surface, and interface. ACS Nano 2019, 13, 9811-9840.
[2]
Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev. 2009, 38, 1999-2011.
[3]
Xu, C. P.; Ravi Anusuyadevi, P.; Aymonier, C.; Luque, R.; Marre, S. Nanostructured materials for photocatalysis. Chem. Soc. Rev. 2019, 48, 3868-3902.
[4]
Zarrin, S.; Heshmatpour, F. Photocatalytic activity of TiO2/Nb2O5/ PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants. J. Hazard. Mater. 2018, 351, 147-159.
[5]
Guo, Q.; Zhou, C. Y.; Ma, Z. B.; Yang, X. M. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997.
[6]
Anwer, H.; Mahmood, A.; Lee, J.; Kim, K. H.; Park, J. W.; Yip, A. C. K. Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Res. 2019, 12, 955-972.
[7]
Yi, L. C.; Ci, S. Q.; Luo, S. L.; Shao, P.; Hou, Y.; Wen, Z. H. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy 2017, 41, 600-608.
[8]
Liu, L. F.; Zhang, J. L.; Tan, X. N.; Zhang, B. X.; Shi, J. B.; Cheng, X. Y.; Tan, D. X.; Han, B. X.; Zheng, L. R.; Zhang, F. Y. Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Res. 2020, 13, 983-988.
[9]
Jalvo, B.; Faraldos, M.; Bahamonde, A.; Rosal, R. Antimicrobial and antibiofilm efficacy of self-cleaning surfaces functionalized by TiO2 photocatalytic nanoparticles against Staphylococcus aureus and Pseudomonas putida. J. Hazard. Mater. 2017, 340, 160-170.
[10]
Yao, P.; Yu, S. H.; Shen, H. F.; Yang, J.; Min, L. F.; Yang, Z. J.; Zhu, X. S. A TiO2-SnS2 nanocomposite as a novel matrix for the development of an enzymatic electrochemical glucose biosensor. New J. Chem. 2019, 43, 16748-16752.
[11]
Sang, L. X.; Zhao, Y. X.; Burda, C. TiO2 nanoparticles as functional building blocks. Chem. Rev. 2014, 114, 9283-9318.
[12]
Hsieh, P. Y.; Chiu, Y. H.; Lai, T. H.; Fang, M. J.; Wang, Y. T.; Hsu, Y. J. TiO2 Nanowire-supported sulfide hybrid photocatalysts for durable solar hydrogen production. ACS Appl. Mater. Interfaces 2019, 11, 3006-3015.
[13]
Zhang, M.; Shang, Q. G.; Wan, Y. Q.; Cheng, Q. R.; Liao, G. Y.; Pan, Z. Q. Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation. Appl. Catal. B: Environ. 2019, 241, 149-158.
[14]
Ge, M. Z.; Li, Q. S.; Cao, C. Y.; Huang, J. Y.; Li, S. H.; Zhang, S. N.; Chen, Z.; Zhang, K. Q.; Al-Deyab, S. S.; Lai, Y. K. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 2017, 4, 1600152.
[15]
Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.
[16]
Eskandarloo, H.; Zaferani, M.; Kierulf, A.; Abbaspourrad, A. Shape-controlled fabrication of TiO2 hollow shells toward photocatalytic application. Appl. Catal. B: Environ. 2018, 227, 519-529.
[17]
Joo, J. B.; Lee, I.; Dahl, M.; Moon, G. D.; Zaera, F.; Yin, Y. D. Controllable synthesis of mesoporous TiO2 hollow shells: Toward an efficient photocatalyst. Adv. Funct. Mater. 2013, 23, 4246-4254.
[18]
Xiao, M.; Wang, Z. L.; Lyu, M.; Luo, B.; Wang, S. C.; Liu, G.; Cheng, H. M.; Wang, L. Z. Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 2019, 31, 1801369.
[19]
Xiao, Y. G.; Sun, X. D.; Li, L. Y.; Chen, J. R.; Zhao, S. D.; Jiang, C. G.; Yang, L. Y.; Cheng, L.; Cao, S. S. Simultaneous formation of a C/N-TiO2 hollow photocatalyst with efficient photocatalytic performance and recyclability. Chin. J. Catal. 2019, 40, 765-775.
[20]
Zhang, S. H.; Li, H. H.; Wang, S. Y.; Liu, Y.; Chen, H.; Lu, Z. X. Bacteria-Assisted Synthesis of Nanosheet-assembled TiO2 hierarchical architectures for constructing TiO2-based composites for photocatalytic and electrocatalytic applications. ACS Appl. Mater. Interfaces 2019, 11, 37004-37012.
[21]
Yang, R. W.; Cai, J. H.; Lv, K. L.; Wu, X. F.; Wang, W. G.; Xu, Z. H.; Li, M.; Li, Q.; Xu, W. Q. Fabrication of TiO2 hollow microspheres assembly from nanosheets (TiO2-HMSs-NSs) with enhanced photoelectric conversion efficiency in DSSCs and photocatalytic activity. Appl. Catal. B: Environ. 2017, 210, 184-193.
[22]
Zhang, C.; Zhou, Y. M.; Zhang, Y. W.; Zhao, S.; Fang, J. S.; Sheng, X. L.; Zhang, T.; Zhang, H. X. Double-shelled TiO2 hollow spheres assembled with TiO2 nanosheets. Chem. Eur. J. 2017, 23, 4336-4343.
[23]
Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919-9986.
[24]
Fu, A.; Chen, X.; Tong, L. H.; Wang, D. F.; Liu, L. Q.; Ye, J. H. Remarkable visible-light photocatalytic activity enhancement over Au/p-type TiO2 promoted by efficient interfacial charge transfer. ACS Appl. Mater. Interfaces 2019, 11, 24154-24163.
[25]
Zhang, Y. H.; Li, Q.; Gao, Q.; Wan, S. Y.; Yao, P.; Zhu, X. S. Preparation of Ag/β-cyclodextrin co-doped TiO2 floating photocatalytic membrane for dynamic adsorption and photoactivity under visible light. Appl. Catal. B: Environ. 2020, 267, 118715.
[26]
Jiang, Z. Y.; Sun, W.; Miao, W. K.; Yuan, Z. M.; Yang, G. H.; Kong, F. G.; Yan, T. J.; Chen, J. C.; Huang, B. B.; An, C. H. et al. Living atomically dispersed Cu ultrathin TiO2 nanosheet CO2 reduction photocatalyst. Adv. Sci. 2019, 6, 1900289.
[27]
Liao, G. F.; Fang, J. S.; Li, Q.; Li, S. H.; Xu, Z. S.; Fang, B. Z. Ag-based nanocomposites: Synthesis and applications in catalysis. Nanoscale 2019, 11, 7062-7096.
[28]
Ma, J.; Gao, S.W. Plasmon-induced electron-hole separation at the Ag/TiO2(110) interface. ACS Nano 2019, 13, 13658-13667.
[29]
Cacciato, G.; Bayle, M.; Pugliara, A.; Bonafos, C.; Zimbone, M.; Privitera, V.; Grimaldi, M. G.; Carles, R. Enhancing carrier generation in TiO2 by a synergistic effect between Plasmon resonance in Ag nanoparticles and optical interference. Nanoscale 2015, 7, 13468-13476.
[30]
Gu, Y.; Jiao, Y. Q.; Zhou, X. G.; Wu, A. P.; Buhe, B.; Fu, H. G. Strongly coupled Ag/TiO2 heterojunctions for effective and stable photothermal catalytic reduction of 4-nitrophenol. Nano Res. 2018, 11, 126-141.
[31]
Hou, H. L.; Gao, F. M.; Wang, L.; Shang, M. H.; Yang, Z. B.; Zheng, J. J.; Yang, W. Y. Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO2/WO3/g-C3N4 nanofibers for visible-light-driven hydrogen evolution. J. Mater. Chem. A 2016, 4, 6276-6281.
[32]
Wang, L. F.; Liu, S. H.; Wang, Z.; Zhou, Y. L.; Qin, Y.; Wang, Z. L. Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano 2016, 10, 2636-2643.
[33]
Li, Q.; Xia, Y.; Yang, C.; Lv, K. L.; Lei, M.; Li, M. Building a direct Z-scheme heterojunction photocatalyst by ZnIn2S4 nanosheets and TiO2 hollowspheres for highly-efficient artificial photosynthesis. Chem. Eng. J. 2018, 349, 287-296.
[34]
Zhang, Y. W.; Xu, J. S.; Mei, J.; Sarina, S.; Wu, Z. Y.; Liao, T.; Yan, C.; Sun, Z. Q. Strongly interfacial-coupled 2D-2D TiO2/g-C3N4 heterostructure for enhanced visible-light induced synthesis and conversion. J. Hazard. Mater. 2020, 394, 122529.
[35]
Tang, S. F.; Yin, X. P.; Wang, G. Y.; Lu, X. L.; Lu, T. B. Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst. Nano Res. 2019, 12, 457-462.
[36]
Wang, W.; Fang, J. J.; Shao, S. F.; Lai, M.; Lu, C. H. Compact and uniform TiO2@g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Appl. Catal. B: Environ. 2017, 217, 57-64.
[37]
Wang, C. J.; Zhao, Y. L.; Xu, H.; Li, Y. F.; Wei, Y. C.; Liu, J.; Zhao, Z. Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O. Appl. Catal. B: Environ. 2020, 263, 118314.
[38]
Zou, Y. D.; Yang, B. B.; Liu, Y.; Ren, Y.; Ma, J. H.; Zhou, X. R.; Cheng, X. W.; Deng, Y. H. Controllable interface-induced co-assembly toward highly ordered mesoporous Pt@TiO2/g-C3N4 heterojunctions with enhanced photocatalytic performance. Adv. Funct. Mater. 2018, 28, 1806214.
[39]
Yao, H. B.; Fan, M. H.; Wang, Y. J.; Luo, G. S.; Fei, W. Y. Magnetic titanium dioxide based nanomaterials: Synthesis, characteristics, and photocatalytic application in pollutant degradation. J. Mater. Chem. A 2015, 3, 17511-17524.
[40]
Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 2014, 114, 6949-6985.
[41]
Wu, L. H.; Mendoza-Garcia, A.; Li, Q.; Sun, S. H. Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 2016, 116, 10473-10512.
[42]
Gawande, M. B.; Branco, P. S.; Varma, R. S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013, 42, 3371-3393.
[43]
Wang, Y. Y.; Pan, F.; Dong, W. H.; Xu, L. L.; Wu, K.; Xu, G. Q.; Chen, W. Recyclable silver-decorated magnetic titania nanocomposite with enhanced visible-light photocatalytic activity. Appl. Catal. B: Environ. 2016, 189, 192-198.
[44]
Chávez, A. M.; Solís, R. R.; Beltrán, F. J. Magnetic graphene TiO2-based photocatalyst for the removal of pollutants of emerging concern in water by simulated sunlight aided photocatalytic ozonation. Appl. Catal. B: Environ. 2020, 262, 118275.
[45]
Cao, L. D.; Ma, D. K.; Zhou, Z. L.; Xu, C. L.; Cao, C.; Zhao, P. Y.; Huang, Q. L. Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe3O4 nanocomposites under visible light irradiation. Chem. Eng. J. 2019, 368, 212-222.
[46]
Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, F. Y.; Zhao, D. Y. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem., Int. Ed. 2009, 48, 5875-5879.
[47]
Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J. Am. Chem. Soc. 2011, 133, 15830-15833.
[48]
Wei, K.; Li, K. X.; Yan, L. S.; Luo, S. L.; Guo, H. Q.; Dai, Y. H.; Luo, X. B. One-step fabrication of g-C3N4 nanosheets/TiO2 hollow microspheres heterojunctions with atomic level hybridization and their application in the multi-component synergistic photocatalytic systems. Appl. Catal. B: Environ. 2018, 222, 88-98.
[49]
Xu, J.; Huang, J.; Wang, Z. P.; Zhu, Y. F. Enhanced visible-light photocatalytic degradation and disinfection performance of oxidized nanoporous g-C3N4 via decoration with graphene oxide quantum dots. Chin. J. Catal. 2020, 41, 474-484.
[50]
Dvoranová, D.; Barbieriková, Z.; Brezová, V. Radical intermediates in photoinduced reactions on TiO2 (an EPR spin trapping study). Molecules 2014, 19, 17279-17304.
[51]
Li, H. L.; Gao, Y.; Wu, X. Y.; Lee, P. H.; Shih, K. Fabrication of heterostructured g-C3N4/Ag-TiO2 hybrid photocatalyst with enhanced performance in photocatalytic conversion of CO2 under simulated sunlight irradiation. Appl. Surf. Sci. 2017, 402, 198-207.
[52]
Lei, J. Y.; Chen, B.; Lv, W. J.; Zhou, L.; Wang, L. Z.; Liu, Y. D.; Zhang, J. L. An inverse opal TiO2/g-C3N4 composite with a heterojunction for enhanced visible light-driven photocatalytic activity. Dalton Trans. 2019, 48, 3486-3495.
File
12274_2020_3237_MOESM1_ESM.pdf (4.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 August 2020
Revised: 26 October 2020
Accepted: 09 November 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors gratefully acknowledge the financial support from Jiangsu Agriculture Science and Technology Innovation Fund (JASTIF) (No. CX (18)2025), National Natural Science Foundation of China (No. 31871881), S&T Support Program of Jiangsu Province (No. BE2017623), the National First-class Discipline Program of Food Science and Technology (No. JUFSTR20180303), and the Distinguished Professor Program of Jiangsu Province.

Return