Journal Home > Volume 14 , Issue 5

The selective hydrogenation of propyne to propylene has attracted great attention in chemical industry for removing trace amount of propyne for producing polymer-grade propylene. As the state-of-the-art catalyst, Pd suffers from the disadvantage of poor propylene selectivity due to the over-hydrogenation of propylene to propane. We here demonstrate that Pd nanocubes (NCs) coated by zeolitic imidazolate frameworks (i.e., Pd NCs@ZIF-8) can serve as highly active and selective catalysts for propyne selective hydrogenation (PSH). Benefitting from the unique properties and abundant groups of ZIF-8, Pd carbide (Pd-C) is formed on the surface of Pd NCs after thermal treatment, which acts the active sites for PSH to propylene. More importantly, the content of Pd-C can be precisely controlled by altering the calcination temperature without aggregation of Pd NCs and obvious changes in the framework of ZIF-8. The formation of Pd-C on Pd NCs@ZIF-8 can strongly suppress the H2 adsorption, and thus selectively catalyze propyne to propylene. Consequently, the optimized catalyst (i.e., Pd NCs@ZIF-8-100) exhibits a propylene selectivity of 96.4% at a propyne conversion of 93.3% at 35 °C and atmospheric pressure. This work may not only provide an efficient catalyst for PSH, but also shed a new light on the catalytic application of ZIFs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Regulation of surface carbides on palladium nanocubes with zeolitic imidazolate frameworks for propyne selective hydrogenation

Show Author's information Linzhong Wu1,2,§Mingyu Chu1,§Jin Gong1Muhan Cao1( )Yu Liu1Yong Xu1,2( )
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, No. 199 Ren’ai Road, Suzhou 215123, China
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

Abstract

The selective hydrogenation of propyne to propylene has attracted great attention in chemical industry for removing trace amount of propyne for producing polymer-grade propylene. As the state-of-the-art catalyst, Pd suffers from the disadvantage of poor propylene selectivity due to the over-hydrogenation of propylene to propane. We here demonstrate that Pd nanocubes (NCs) coated by zeolitic imidazolate frameworks (i.e., Pd NCs@ZIF-8) can serve as highly active and selective catalysts for propyne selective hydrogenation (PSH). Benefitting from the unique properties and abundant groups of ZIF-8, Pd carbide (Pd-C) is formed on the surface of Pd NCs after thermal treatment, which acts the active sites for PSH to propylene. More importantly, the content of Pd-C can be precisely controlled by altering the calcination temperature without aggregation of Pd NCs and obvious changes in the framework of ZIF-8. The formation of Pd-C on Pd NCs@ZIF-8 can strongly suppress the H2 adsorption, and thus selectively catalyze propyne to propylene. Consequently, the optimized catalyst (i.e., Pd NCs@ZIF-8-100) exhibits a propylene selectivity of 96.4% at a propyne conversion of 93.3% at 35 °C and atmospheric pressure. This work may not only provide an efficient catalyst for PSH, but also shed a new light on the catalytic application of ZIFs.

Keywords: propyne selective hydrogenation, Pd nanocubes, zeolitic imidazolate frameworks, core-shell nanostructures, Pd carbide

References(37)

[1]
E. M. Aizenshtein, Polypropylene fibres and yarns in the current state of development. Fibre Chem. 2008, 40, 399-405.
[2]
F. Studt,; F. Abild-Pedersen,; T. Bligaard,; R. Z. Sørensen,; C. H. Christensen,; J. K. Nørskov, Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008, 320, 1320-1322.
[3]
Á. Molnár,; A. Sárkány,; M. Varga, Hydrogenation of carbon-carbon multiple bonds: Chemo-, regio- and stereo-selectivity. J. Mol. Catal. A: Chem. 2001, 173, 185-221.
[4]
M. Crespo-Quesada,; F. Cárdenas-Lizana,; A. L. Dessimoz,; L. Kiwi-Minsker, Modern trends in catalyst and process design for alkyne hydrogenations. ACS Catal. 2012, 2, 1773-1786.
[5]
A. Cadiau,; K. Adil,; P. M. Bhatt,; Y. Belmabkhout,; M. Eddaoudi, A metal-organic framework-based splitter for separating propylene from propane. Science 2016, 353, 137-140.
[6]
M. F. Friedrich,; M. Lucas,; P. Claus, Selective hydrogenation of propyne on a solid Pd/Al2O3 catalyst modified with ionic liquid layer (SCILL). Catal. Commun. 2017, 88, 73-76.
[7]
B. Chen,; U. Dingerdissen,; J. G. E. Krauter,; H. G. J. Lansink Rotgerink,; K. Möbus,; D. J. Ostgard,; P. Panster,; T. H. Riermeier,; S. Seebald,; T. Tacke, et al. New developments in hydrogenation catalysis particularly in synthesis of fine and intermediate chemicals. Appl. Catal. A: Gen. 2005, 280, 17-46.
[8]
T. Mitsudome,; T. Urayama,; K. Yamazaki,; Y. Maehara,; J. Yamasaki,; K. Gohara,; Z. Maeno,; T. Mizugaki,; K. Jitsukawa,; K. Kaneda, Design of core-Pd/shell-Ag nanocomposite catalyst for selective semihydrogenation of alkynes. ACS Catal. 2016, 6, 666-670.
[9]
W. Long,; N. A. Brunelli,; S. A. Didas,; E. W. Ping,; C. W. Jones, Aminopolymer-silica composite-supported Pd catalysts for selective hydrogenation of alkynes. ACS Catal. 2013, 3, 1700-1708.
[10]
J. López-Serrano,; S. B. Duckett,; S. Aiken,; K. Q. Almeida Leñero,; E. Drent,; J. P. Dunne,; D. Konya,; A. C. Whitwood, A para-hydrogen investigation of palladium-catalyzed alkyne hydrogenation. J. Am. Chem. Soc. 2007, 129, 6513-6527.
[11]
Á. Mastalir,; Z. Király,; G. Szöllosi,; M. Bartók, Preparation of organophilic Pd-montmorillonite, An efficient catalyst in alkyne semihydrogenation. J. Catal. 2000, 194, 146-152.
[12]
Q. C. Feng,; S. Zhao,; Y. Wang,; J. C. Dong,; W. X. Chen,; D. S. He,; D. S. Wang,; J. Yang,; Y. M. Zhu,; H. M. Zhu, et al. Isolated single-atom Pd sites in intermetallic nanostructures: High catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 2017, 139, 7294-7301.
[13]
D. R. Kennedy,; G. Webb,; S. D. Jackson,; D. Lennon, Propyne hydrogenation over alumina-supported palladium and platinum catalysts. Appl. Catal. A: Gen. 2004, 259, 109-120.
[14]
R. Chinchilla,; C. Nájera, Chemicals from alkynes with palladium catalysts. Chem. Rev. 2014, 114, 1783-1826.
[15]
D. Teschner,; E. Vass,; M. Hävecker,; S. Zafeiratos,; P. Schnörch,; H. Sauer,; A. Knop-Gericke,; R. Schlögl,; M. Chamam,; A. Wootsch, et al. Alkyne hydrogenation over Pd catalysts: A new paradigm. J. Catal. 2006, 242, 26-37.
[16]
D. Teschner,; J. Borsodi,; A. Wootsch,; Z. Révay,; M. Hävecker,; A. Knop-Gericke,; S. David Jackson,; R. Schlögl, The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320, 86-89.
[17]
D. Teschner,; Z. Révay,; J. Borsodi,; M. Hävecker,; A. Knop-Gericke,; R. Schlögl,; D. Milroy; S. D. Jackson,; D. Torres,; P. Sautet. Understanding palladium hydrogenation catalysts: When the nature of the reactive molecule controls the nature of the catalyst active phase. Angew. Chem., Int. Ed. 2008, 47, 9274-9278.
[18]
D. Teschner,; J. Borsodi,; Z. Kis,; L. Szentmiklósi,; Z. Révay,; A. Knop-Gericke,; R. Schlögl,; D. Torres,; P. Sautet, Role of hydrogen species in palladium-catalyzed alkyne hydrogenation. J. Phys. Chem. C 2010, 114, 2293-2299.
[19]
F. Studt,; F. Abild-Pedersen,; T. Bligaard,; R. Z. Sørensen,; C. H. Christensen,; J. K. Nørskov, On the role of surface modifications of palladium catalysts in the selective hydrogenation of acetylene. Angew. Chem., Int. Ed. 2008, 47, 9299-9302.
[20]
M. García-Mota,; B. Bridier,; J. Pérez-Ramírez,; N. López, Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. J. Catal. 2010, 273, 92-102.
[21]
Y. Xu,; W. Y. Bian,; Q. Pan,; M. Y. Chu,; M. H. Cao,; Y. Y. Li,; Z. M. Gong,; R. Wang,; Y. Cui,; H. P. Lin, et al. Revealing the active sites of Pd nanocrystals for propyne semihydrogenation: From theory to experiment. ACS Catal. 2019, 9, 8471-8480.
[22]
M. Q. Huang,; W. W. Liu,; L. Wang,; J. W. Liu,; G. Y. Chen,; W. B. You,; J. Zhang,; L. J. Yuan,; X. F. Zhang,; R. C. Che, Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution. Nano. Res. 2020, 13, 810-817.
[23]
F. Lyu,; Y. C. Bai,; Z. W. Li,; W. J. Xu,; Q. F. Wang,; J. Mao,; L. Wang,; X. W. Zhang,; Y. D. Yin, Self-templated fabrication of CoO-MoO2 nanocages for enhanced oxygen evolution. Adv. Funct. Mater. 2017, 27, 1702324.
[24]
J. Tang,; R. R. Salunkhe,; J. Liu,; N. L. Torad,; M. Imura,; S. Furukawa,; Y. Yamauchi, Thermal conversion of core-shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 2015, 137, 1572-1580.
[25]
J. J. Chen,; X. L. Yuan,; F. Lyu,; Q. X. Zhong,; H. C. Hu,; Q. Pan,; Q. Zhang, Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 1281-1286.
[26]
J. F. Wen,; Y. J. Chen,; S. F. Ji,; J. Zhang,; D. S. Wang,; Y. D. Li, Metal-organic frameworks-derived nitrogen-doped carbon supported nanostructured PtNi catalyst for enhanced hydrosilylation of 1-octene. Nano Res. 2019, 12, 2584-2588.
[27]
T. T. Sun,; L. B. Xu,; D. S. Wang,; Y. D. Li, Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[28]
Y. V. Kaneti,; J. Tang,; R. R. Salunkhe,; X. C. Jiang,; A. B. Yu,; K. C. W. Wu,; Y. Yamauchi, Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 2017, 29, 1604898.
[29]
J. F. Yao,; H. T. Wang, Zeolitic imidazolate framework composite membranes and thin films: Synthesis and applications. Chem. Soc. Rev. 2014, 43, 4470-4493.
[30]
Z. C. Kong,; J. F. Liao,; Y. J. Dong,; Y. F. Xu,; H. Y. Chen,; D. B. Kuang,; C. Y. Su, CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 2018, 3, 2656-2662.
[31]
V. Armel,; S. Hindocha,; F. Salles,; S. Bennett,; D. Jones,; F. Jaouen, Structural descriptors of zeolitic-imidazolate frameworks are keys to the activity of Fe-N-C catalysts. J. Am. Chem. Soc. 2017, 139, 453-464.
[32]
S. Chaemchuen,; X. Xiao,; M. Ghadamyari,; B. Mousavi,; N. Klomkliang,; Y. Yuan,; F. Verpoort, Robust and efficient catalyst derived from bimetallic Zn/Co zeolitic imidazolate frameworks for CO2 conversion. J. Catal. 2019, 370, 38-45.
[33]
J. N. Chen,; M. Y. Chu,; F. Lyu,; J. Gong,; L. Z. Wu,; L. J. Liu,; Y. Xu,; Q. Zhang, Strong synergy between Ti3C2 and N-doped Co nanoparticles boosts the selective hydrogenation of propyne. Ind. Eng. Chem. Res. 2019, 58, 21413-21418.
[34]
Y. F. Han,; D. Kumar,; C. Sivadinarayana,; A. Clearfield,; D. W. Goodman, The formation of PdCx over Pd-based catalysts in vapor-phase vinyl acetate synthesis: Does a Pd-Au alloy catalyst resist carbide formation? Catal. Lett. 2004, 94, 131-134.
[35]
J. A. McCaulley, In-situ X-ray absorption spectroscopy studies of hydride and carbide formation in supported palladium catalysts. J. Phys. Chem. 1993, 97, 10372-10379.
[36]
D. J. Jones,; J. Roziere,; L. E. Aleandri,; B. Bogdanovic,; S. C. Huckett, Intermetallic phases in the magnesium-palladium system: X-ray absorption spectroscopic characterization of the amorphous magnesium-palladium-carbon-hydrogen alloy MgPdCxHy. Chem. Mater. 1992, 4, 620-625.
[37]
J. A. McCaulley, Temperature dependence of the Pd K-edge extended X-ray-absorption fine structure of PdCx (x ~ 0.13). Phys. Rev. B 1993, 47, 4873-4879.
File
12274_2020_3235_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 September 2020
Revised: 09 November 2020
Accepted: 12 November 2020
Published: 06 January 2021
Issue date: May 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21703146 and 51802206) and Natural Science Foundation of Jiangsu Province (No. BK20180846). We also acknowledge the financial support from the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and SWC for Synchrotron Radiation. Yong Xu acknowledges the financial support from Guangdong University of Technology.

Return