AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Microwave-assisted synthesis of Cr3C2@C core shell structure anchored on hierarchical porous carbon foam for enhanced polysulfide adsorption in Li-S batteries

Xierong Zeng1( )Jianxin Tu2Shuangshuang Chen3Shaozhong Zeng4Qi Zhang5Jizhao Zou1Kezhi Li2( )
Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi’an 710072, China
School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
Show Author Information

Graphical Abstract

Abstract

In this paper, we use microwave reduction strategy to synthesize a new bi-functional sulfur host material at the service of cathode substrate for lithium-sulfur batteries (LSBs), the composite is made of hierarchical porous carbon foam supported carbon-encapsulated chromium carbide nano-particles (Cr3C2@C/HPCF), in which the well-distributed conductive Cr3C2 nano-particles can act as powerful chemical adsorbent and are effective in restraining the shuttle effect of lithium polysulfides (LiPSs). Test results show that the Cr3C2@C/HPCF based sulfur electrodes with 75 wt.% of sulfur exhibit a high initial discharging capacity of 1,321.1 mAh·g-1 at 0.1 C (3.5 mg·cm-2), and a reversible capacity can still maintain stability at 1,002.1 mAh·g-1 after 150 cycles. Even increasing the areal sulfur loading to 4 mg·cm-2, the electrodes can still deliver an initial discharging capacity of 948.0 mAh·g-1 at 0.5 C with ultra-slow capacity decay rate of 0.075% per cycle during 500 cycles. Furthermore, the adsorption energy between the Cr3C2 surface and LiPSs as well as theoretic analysis based on first-principles is also investigated.

Electronic Supplementary Material

Download File(s)
12274_2020_3233_MOESM1_ESM.pdf (2.3 MB)

References

[1]
Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.
[2]
Zhou, G. M.; Xu, L.; Hu, G. W.; Mai, L. Q.; Cui, Y. Nanowires for electrochemical energy storage. Chem. Rev. 2019, 119, 11042-11109.
[3]
Wu, D. S.; Zhou, G. M.; Mao, E. Y.; Sun, Y. M.; Liu, B. F.; Wang, L.; Wang, J. Y.; Shi, F. F.; Cui, Y. A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes. Nano Res. 2020, 13, 1383-1388.
[4]
Zhou, S. Y.; Hu, J. Y.; Liu, S. G.; Lin, J. X.; Cheng, J.; Mei, T.; Wang, X. B.; Liao, H. G.; Huang, L.; Sun, S. G. Biomimetic micro cell cathode for high performance lithium-sulfur batteries. Nano Energy 2020, 72, 104680.
[5]
Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605-5634.
[6]
Shi, Y.; Yi, Z. B.; Kuang, Y. P.; Guo, H. Y.; Li, Y. Z.; Liu, C.; Lu, Z. G. Constructing stable covalent bonding in black phosphorus/reduced graphene oxide for lithium ion battery anodes. Chem. Commun. 2020, 56, 11613-11616.
[7]
Li, F.; Liu, Q. H.; Hu, J. W.; Feng, Y. Z.; He, P. B.; Ma, J. M. Recent advances in cathode materials for rechargeable lithium-sulfur batteries. Nanoscale 2019, 11, 15418-15439.
[8]
Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252-264.
[9]
Camacho-Forero, L. E.; Balbuena, P. B. Elucidating interfacial phenomena between solid-state electrolytes and the sulfur-cathode of lithium-sulfur batteries. Chem. Mater. 2020, 32, 360-373.
[10]
Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285-291.
[11]
Wang, F.; Zuo, Z. C.; Li, L.; He, F.; Li, Y. L. Graphdiyne nanostructure for high-performance lithium-sulfur batteries. Nano Energy 2020, 68, 104307.
[12]
Yu, X. F.; Tian, D. X.; Li, W. C.; He, B.; Zhang, Y.; Chen, Z. Y.; Lu, A. H. One-pot synthesis of highly conductive nickel-rich phosphide/ CNTs hybrid as a polar sulfur host for high-rate and long-cycle Li-S battery. Nano Res. 2019, 12, 1193-1197.
[13]
Maletti, S.; Podetti, F. S.; Oswald, S.; Giebeler, L.; Barbero, C. A.; Mikhailova, D.; Balach, J. LiV3O8-based functional separator coating as effective polysulfide mediator for lithium-sulfur batteries. ACS Appl. Energy Mater. 2020, 3, 2893-2899.
[14]
Li, Z. H.; Zhou, C.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Xu, X.; Mai, L. Q. Engineering oxygen vacancies in a polysulfide- blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.
[15]
Tu, J. X.; Li, H. J.; Chen, S. S.; Zou, J. Z.; Zeng, S. Z.; Deng, F.; Zeng, X. R. Three-dimensional porous carbon skeleton synthesized by a template-free and no-post-activation process applied for high- performance lithium-sulfur batteries. ACS Sustainable Chem. Eng. 2020, 8, 6964-6971.
[16]
Liao, Y. Q.; Xiang, J. W.; Yuan, L. X.; Hao, Z. X.; Gu, J. F.; Chen, X.; Yuan, K.; Kalambate, P. K.; Huang, Y. H. Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 37955-37962.
[17]
Cui, G. L.; Li, G. R.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Wang, D. R.; Wang, J. Y.; Zhang, Z.; Wang, X.; Chen, Z. W. Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. Nano Energy 2020, 72, 104685.
[18]
Zheng, Y.; Zheng, S. S.; Xue, H. G.; Pang, H. Metal-organic frameworks for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 3469-3491.
[19]
Tu, J. X.; Li, H. J.; Zou, J. Z.; Zeng, S. Z.; Zhang, Q.; Yu, L.; Zeng, X. R. Microwave-assisted rapid preparation of hollow carbon nanospheres@ TiN nanoparticles for lithium-sulfur batteries. Dalton Trans. 2018, 47, 16909-16917.
[20]
Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.
[21]
Yang, W.; Yang, W.; Dong, L. B.; Gao, X. C.; Wang, G. X.; Shao, G. J. Enabling immobilization and conversion of polysulfides through a nitrogen-doped carbon nanotubes/ultrathin MoS2 nanosheet core-shell architecture for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 13103-13112.
[22]
Ma, L. B.; Zhang, W. J.; Wang, L.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Chen, R. P.; Chen, T.; Tie, Z. X.; Liu, J. et al. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium-sulfur batteries. ACS Nano 2018, 12, 4868-4876.
[23]
Hu, J.; Wang, Z. Y.; Fu, Y.; Lyu, L.; Lu, Z. G.; Zhou, L. M. In situ assembly of MnO2 nanosheets on sulfur-embedded multichannel carbon nanofiber composites as cathodes for lithium-sulfur batteries. Sci. China Mater. 2020, 63, 728-738.
[24]
Li, N.; Chen, Z. X.; Chen, F.; Hu, G. J.; Wang, S. G.; Sun, Z. H.; Sun, X. D.; Li, F. From interlayer to lightweight capping layer: Rational design of mesoporous TiO2 threaded with CNTs for advanced Li-S batteries. Carbon 2019, 143, 523-530.
[25]
Wang, Y. K.; Zhang, R. F.; Chen, J.; Wu, H.; Lu, S. Y.; Wang, K.; Li, H. L.; Harris, C. J.; Xi, K.; Kumar, R. V. et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater. 2019, 9, 1900953.
[26]
Zheng, C.; Niu, S. Z.; Lv, W.; Zhou, G. M.; Li, J.; Fan, S. X.; Deng, Y. Q.; Pan, Z. Z.; Li, B. H.; Kang, F. Y. et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries. Nano Energy 2017, 33, 306-312.
[27]
Tian, Y.; Zhao, Y.; Zhang, Y. G.; Ricardez-Sandoval, L.; Wang, X.; Li, J. D. Construction of oxygen-deficient La(OH)3 nanorods wrapped by reduced graphene oxide for polysulfide trapping toward high- performance lithium/sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 23271-23279.
[28]
Gao, C.; Fang, C. Z.; Zhao, H. M.; Yang, J. Y.; Gu, Z. D.; Sun, W.; Zhang, W. N.; Li, S.; Xu, L. C.; Li, X. Y. et al. Rational design of multi-functional CoS@rGO composite for performance enhanced Li-S cathode. J. Power Sources 2019, 421, 132-138.
[29]
Tu, J. X.; Li, H. J.; Lan, T. B.; Zeng, S. Z.; Zou, J. Z.; Zhang, Q.; Zeng, X. R. Facile synthesis of TiN nanocrystals/graphene hybrid to chemically suppress the shuttle effect for lithium-sulfur batteries. J. Alloys Compd. 2020, 822, 153751.
[30]
Wang, H. Q.; Zhang, N.; Li, Y.; Zhang, P. Y.; Chen, Z.; Zhang, C. F.; Qiao, X.; Dai, Y. J.; Wang, Q. H.; Liu, S. H. Unique flexible NiFe2O4@ S/rGO-CNT electrode via the synergistic adsorption/electrocatalysis effect toward high-performance lithium-sulfur batteries. J. Phys. Chem. Lett. 2019, 10, 6518-6524.
[31]
Li, C. X.; Xi, Z. C.; Guo, D. X.; Chen, X. J.; Yin, L. W. Chemical immobilization effect on lithium polysulfides for lithium-sulfur batteries. Small 2018, 14, 1701986.
[32]
Cai, W. L.; Li, G. R.; Zhang, K. L.; Xiao, G. N.; Wang, C.; Ye, K. F.; Chen, Z. W.; Zhu, Y. C.; Qian, Y. T. Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium- sulfur batteries. Adv. Funct. Mater. 2018, 28, 1704865.
[33]
Li, H. X.; Ma, S.; Cai, H. Q.; Zhou, H. H.; Huang, Z. Y.; Hou, Z. H.; Wu, J. J.; Yang, W. J.; Yi, H. B.; Fu, C. P. et al. Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. Energy Storage Mater. 2019, 18, 338-348.
[34]
Kavitha, M.; Priyanga, G. S.; Rajeswarapalanichamy, R.; Iyakutti, K. Structural stability, electronic, mechanical and superconducting properties of CrC and MoC. Mater. Chem. Phys. 2016, 169, 71-81.
[35]
Tao, X. Y.; Chen, X. R.; Xia, Y.; Huang, H.; Gan, Y. P.; Wu, R.; Chen, F.; Zhang, W. K. Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 3295-3301.
[36]
Sun, Q. Q.; Chen, K. X.; Liu, Y. B.; Li, Y. F.; Wei, M. D. Rutile TiO2 Mesocrystals as sulfur host for high-performance lithium-sulfur batteries. Chem. -Eur. J. 2017, 23, 16312-16318.
[37]
Hu, Y.; Chen, W.; Lei, T. Y.; Jiao, Y.; Wang, H. B.; Wang, X. P.; Rao, G. F.; Wang, X. F.; Chen, B.; Xiong, J. Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery. Nano Energy 2020, 68, 104373.
[38]
Li, X. X.; Gao, B.; Huang, X.; Guo, Z. J.; Li, Q. W.; Zhang, X. M.; Chu, P. K.; Huo, K. F. Conductive Mesoporous niobium nitride microspheres/nitrogen-doped graphene hybrid with efficient polysulfide anchoring and catalytic conversion for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 2961-2969.
[39]
Chen, D.; Yue, X. Y.; Li, X. L.; Bao, J.; Qiu, Q. Q.; Wu, X. J.; Zhang, X.; Zhou, Y. N. Freestanding double-layer MoO3/CNT@S membrane: A promising flexible cathode for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 2354-2361.
[40]
Chen, G. L.; Li, Y. J.; Zhong, W. T.; Zheng, F. H.; Hu, J. H.; Ji, X. H.; Liu, W. Z.; Yang, C. H.; Lin, Z.; Liu, M. L. MOFs-derived porous Mo2C-C nano-octahedrons enable high-performance lithium- sulfur batteries. Energy Storage Mater. 2020, 25, 547-554.
[41]
Li, G. R.; Lei, W.; Luo, D.; Deng, Y. P.; Wang, D. L.; Chen, Z. W. 3D porous carbon sheets with multidirectional ion pathways for fast and durable lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702381.
[42]
Li, G. R.; Lei, W.; Luo, D.; Deng, Y. P.; Deng, Z. P.; Wang, D. L.; Yu, A. P.; Chen, Z. W. Stringed “tube on cube” nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium-sulfur batteries. Energy Environ. Sci. 2018, 11, 2372-2381.
[43]
Zhou, X. F.; Chen, L. L.; Zhang, W. H.; Wang, J. W.; Liu, Z. J.; Zeng, S. F.; Xu, R.; Wu, Y.; Ye, S. F.; Feng, Y. Z. et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2019, 19, 4965-4973.
[44]
Wen, Q. B.; Yu, Z. J.; Riedel, R. The fate and role of in situ formed carbon in polymer-derived ceramics. Prog. Mater. Sci. 2020, 109, 100623.
[45]
Wen, Q. B.; Yao, F.; Yu, Z. J.; Peng, D. L.; Riedel, R. Microwave absorption of SiC/HfCxN1-x/C ceramic nanocomposites with HfCxN1-x- carbon core-shell particles. J. Am. Ceram. Soc. 2016, 99, 2655-2663.
[46]
Ramqvist, L. Electronic structure of cubic refractory carbides. J. Appl. Phys. 1971, 42, 2113-2120.
[47]
Detroye, M.; Reniers, F.; Buess-Herman, C.; Vereecken, J. AES-XPS study of chromium carbides and chromium iron carbides. Appl. Surf. Sci. 1999, 144-45, 78-82.
[48]
Zhang, P.; Li, X. L.; Hua, Y.; Yu, J. J.; Ding, Y. S. Enhanced performance and anchoring polysulfide mechanism of carbon aerogel/ sulfur material with Cr doping and pore tuning for Li-S batteries. Electrochim. Acta 2018, 282, 499-509.
[49]
Yang, T.; Chen, Z.; Zhang, H.; Zhang, M.; Wang, T. H. Multifunctional Cr2O3 quantum nanodots to improve the lithium-ion storage performance of free-standing carbon nanofiber networks. Electrochim. Acta 2016, 217, 55-61.
[50]
Gan, Y. Q.; Lai, Y. Q.; Zhang, Z.; Chen, W.; Du, K.; Li, J. Hierarchical Cr2O3@OPC composites with octahedral shape for rechargeable nonaqueous lithium-oxygen batteries. J. Alloys Compd. 2016, 665, 365-372.
[51]
Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.
[52]
Li, Z. H.; He, Q.; Xu, X.; Zhao, Y.; Liu, X. W.; Zhou, C.; Ai, D.; Xia, L. X.; Mai, L. Q. A 3D nitrogen-doped Graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 2018, 30, 1804089.
[53]
Zhou, F.; Li, Z.; Luo, X.; Wu, T.; Jiang, B.; Lu, L. L.; Yao, H. B.; Antonietti, M.; Yu, S. H. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries. Nano Lett. 2018, 18, 1035-1043.
Nano Research
Pages 2345-2352
Cite this article:
Zeng X, Tu J, Chen S, et al. Microwave-assisted synthesis of Cr3C2@C core shell structure anchored on hierarchical porous carbon foam for enhanced polysulfide adsorption in Li-S batteries. Nano Research, 2021, 14(7): 2345-2352. https://doi.org/10.1007/s12274-020-3233-7
Topics:

882

Views

6

Crossref

0

Web of Science

7

Scopus

1

CSCD

Altmetrics

Received: 18 September 2020
Revised: 25 October 2020
Accepted: 09 November 2020
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return