Journal Home > Volume 14 , Issue 7

Heterostructure has triggered a surge of interest due to its synergistic effects between two different layers, which contributes to desirable physical properties for extensive potential applications. Structurally stable borophene is becoming a promising candidate for constructing two-dimensional (2D) heterostructures, but it is rarely prepared by suitable synthesis conditions experimentally. Here, we demonstrate that a novel heterostructure composed of hydrogenated borophene and graphene can be prepared by heating the mixture of sodium borohydride and few-layered graphene followed by stepwise and in situ thermal decomposition of sodium borohydride under high-purity hydrogen as the carrier gas. The fabricated borophene-graphene heterostructure humidity sensor shows ultrahigh sensitivity, fast response, and long-time stability. The sensitivity of the fabricated borophene-based sensor is near 700 times higher than that of pristine graphene one at the relative humidity of 85% RH. The sensitivity of the sensor is highest among all the reported chemiresistive sensors based on 2D materials. Besides, the performance of the borophene-graphene flexible sensor maintains good stability after bending, which shows that the borophene-based heterostructures can be applied in wearable electronics. The observed high performance can be ascribed to the well-established charge transfer mechanism upon H2O molecule adsorption. This study further promotes the fundamental studies of interfacial effects and interactions between boron-based 2D heterostructures and chemical species.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Borophene-graphene heterostructure: Preparation and ultrasensitive humidity sensing

Show Author's information Chuang HouGuo’an Tai( )Bo LiuZenghui WuYonghe Yin
The State Key Laboratory of Mechanics and Control of Mechanical Structures and Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Heterostructure has triggered a surge of interest due to its synergistic effects between two different layers, which contributes to desirable physical properties for extensive potential applications. Structurally stable borophene is becoming a promising candidate for constructing two-dimensional (2D) heterostructures, but it is rarely prepared by suitable synthesis conditions experimentally. Here, we demonstrate that a novel heterostructure composed of hydrogenated borophene and graphene can be prepared by heating the mixture of sodium borohydride and few-layered graphene followed by stepwise and in situ thermal decomposition of sodium borohydride under high-purity hydrogen as the carrier gas. The fabricated borophene-graphene heterostructure humidity sensor shows ultrahigh sensitivity, fast response, and long-time stability. The sensitivity of the fabricated borophene-based sensor is near 700 times higher than that of pristine graphene one at the relative humidity of 85% RH. The sensitivity of the sensor is highest among all the reported chemiresistive sensors based on 2D materials. Besides, the performance of the borophene-graphene flexible sensor maintains good stability after bending, which shows that the borophene-based heterostructures can be applied in wearable electronics. The observed high performance can be ascribed to the well-established charge transfer mechanism upon H2O molecule adsorption. This study further promotes the fundamental studies of interfacial effects and interactions between boron-based 2D heterostructures and chemical species.

Keywords: two-dimensional materials, heterostructure, graphene, borophene, humidity sensor

References(53)

[1]
Piazza, Z. A.; Hu, H. S.; Li, W. L.; Zhao, Y. F.; Li, J.; Wang, L. S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.
[2]
Mannix, A. J.; Zhang, Z. H.; Guisinger, N. P.; Yakobson, B. I.; Hersam, M. C. Borophene as a prototype for synthetic 2D materials development. Nat. Nanotechnol. 2018, 13, 444-450.
[3]
Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Two-dimensional boron: Structures, properties and applications. Chem. Soc. Rev. 2017, 46, 6746-6763.
[4]
Sun, X.; Liu, X. F.; Yin, J.; Yu, J.; Li, Y.; Hang, Y.; Zhou, X. C.; Yu, M. L.; Li, J. D.; Tai, G. A. et al. Two-dimensional boron crystals: Structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 2017, 27, 1603300.
[5]
Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 2015, 54, 15473-15477.
[6]
Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513-1516.
[7]
Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two- dimensional boron sheets. Nat. Chem. 2016, 8, 563-568.
[8]
Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Polyphony in B flat. Nat. Chem. 2016, 8, 525-527.
[9]
Liu, L. R.; Zhang, Z. H.; Liu, X. F.; Xuan, X. Y.; Yakobson, B. I.; Hersam, M. C.; Guo, W. L. Borophene concentric superlattices via self-assembly of twin boundaries. Nano Lett. 2020, 20, 1315-1321.
[10]
Penev, E. S.; Kutana, A.; Yakobson, B. I. Can two-dimensional boron superconduct? Nano Lett. 2016, 16, 2522-2526.
[11]
Zhao, Y. C.; Zeng, S. M.; Ni, J. Phonon-mediated superconductivity in borophenes. Appl. Phys. Lett. 2016, 108, 242601.
[12]
Xie, S. Y.; Wang, Y. L.; Li, X. B. Flat boron: A new cousin of graphene. Adv. Mater. 2019, 31, 1900392.
[13]
Hou, C.; Tai, G. A.; Hao, J. Q.; Sheng, L. H.; Liu, B.; Wu, Z. T. Ultrastable crystalline semiconducting hydrogenated borophene. Angew. Chem., Int. Ed. 2020, 59, 10819-10825.
[14]
Sergeeva, A. P.; Popov, I. A.; Piazza, Z. A.; Li, W. L.; Romanescu, C.; Wang, L. S.; Boldyrev, A. I. Understanding boron through size- selected clusters: Structure, chemical bonding, and fluxionality. Acc. Chem. Res. 2014, 47, 1349-1358.
[15]
Li, W. L.; Chen, Q.; Tian, W. J.; Bai, H.; Zhao, Y. F.; Hu, H. S.; Li, J.; Zhai, H. J.; Li, S. D.; Wang, L. S. The B35 cluster with a double- hexagonal vacancy: A new and more flexible structural motif for borophene. J. Am. Chem. Soc. 2014, 136, 12257-12260.
[16]
Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P. et al. Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340, 1427-1430.
[17]
Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 2014, 343, 163-167.
[18]
Bediako, D. K.; Rezaee, M.; Yoo, H.; Larson, D. T.; Zhao, S. Y. F.; Taniguchi, T.; Watanabe, K.; Brower-Thomas, T. L.; Kaxiras, E.; Kim, P. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 2018, 558, 425-429.
[19]
Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826-830.
[20]
Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100-103.
[21]
Liu, Y. P.; Rodrigues, J. N. B.; Luo, Y. Z.; Li, L. J.; Carvalho, A.; Yang, M.; Laksono, E.; Lu, J. P.; Bao, Y.; Xu, H. et al. Tailoring sample-wide pseudo-magnetic fields on a graphene-black phosphorus heterostructure. Nat. Nanotechnol. 2018, 13, 828-834.
[22]
Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246-3252.
[23]
Iannaccone, G.; Bonaccorso, F.; Colombo, L.; Fiori, G. Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 2018, 13, 183-191.
[24]
Xu, H.; Han, X. Y.; Dai, X.; Liu, W.; Wu, J.; Zhu, J. T.; Kim, D. Y.; Zou, G. F.; Sablon, K. A.; Sergeev, A. et al. High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors. Adv. Mater. 2018, 30, 1706561.
[25]
Luo, M. M.; Fan, T. J.; Zhou, Y.; Zhang, H.; Mei, L. 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 2019, 29, 1808306.
[26]
Guo, S. Y.; Zhang, Y. P.; Ge, Y. Q.; Zhang, S. L.; Zeng, H. B.; Zhang, H. 2D V-V binary materials: Status and challenges. Adv. Mater. 2019, 31, 1902352.
[27]
Tao, W.; Kong, N.; Ji, X. Y.; Zhang, Y. P.; Sharma, A.; Ouyang, J.; Qi, B. W.; Wang, J. Q.; Xie, N.; Kang, C. et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 2019, 48, 2891-2912.
[28]
Qiu, M.; Singh, A.; Wang, D.; Qu, J. L.; Swihart, M.; Zhang, H.; Prasad, P. N. Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus. Nano Today 2019, 25, 135-155.
[29]
Liu, X. L.; Hersam, M. C. Borophene-graphene heterostructures. Sci. Adv. 2019, 5, eaax6444.
[30]
Arenal, R.; Lopez-Bezanilla, A. In situ formation of carbon nanotubes encapsulated within boron nitride nanotubes via electron irradiation. ACS Nano 2014, 8, 8419-8425.
[31]
Nishino, H.; Fujita, T.; Cuong, N. T.; Tominaka, S.; Miyauchi, M.; Iimura, S.; Hirata, A.; Umezawa, N.; Okada, S.; Nishibori, E. et al. Formation and characterization of hydrogen boride sheets derived from MgB2 by cation exchange. J. Am. Chem. Soc. 2017, 139, 13761-13769.
[32]
Kidambi, P. R.; Bayer, B. C.; Blume, R.; Wang, Z. J.; Baehtz, C.; Weatherup, R. S.; Willinger, M. G.; Schloegl, R.; Hofmann, S. Observing graphene grow: Catalyst-graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett. 2013, 13, 4769-4778.
[33]
Ennaceur, M. M.; Terreault, B. XPS study of the process of oxygen gettering by thin films of PACVD boron. J. Nucl. Mater. 2000, 280, 33-38.
[34]
Ronning, C.; Schwen, D.; Eyhusen, S.; Vetter, U.; Hofsäss, H. Ion beam synthesis of boron carbide thin films. Surf. Coat. Technol. 2002, 158-159, 382-387.
[35]
Liu, H. L.; Siregar, S.; Hasdeo, E. H.; Kumamoto, Y.; Shen, C. C.; Cheng, C. C.; Li, L. J.; Saito, R.; Kawata, S. Deep-ultraviolet Raman scattering studies of monolayer graphene thin films. Carbon 2015, 81, 807-813.
[36]
Zhou, W.; Zeng, J. W.; Li, X. F.; Xu, J.; Shi, Y.; Ren, W.; Miao, F.; Wang, B. G.; Xing, D. Y. Ultraviolet Raman spectra of double- resonant modes of graphene. Carbon 2016, 101, 235-238.
[37]
Kuang, Q.; Lao, C. S.; Wang, Z. L.; Xie, Z. X.; Zheng, L. S. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070-6071.
[38]
Zhang, D. Z.; Tong, J.; Xia, B. K.; Xue, Q. Z. Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens. Actuators B: Chem. 2014, 203, 263-270.
[39]
Smith, A. D.; Elgammal, K.; Niklaus, F.; Delin, A.; Fischer, A. C.; Vaziri, S.; Forsberg, F.; Råsander, M.; Hugosson, H.; Bergqvist, L. et al. Resistive graphene humidity sensors with rapid and direct electrical readout. Nanoscale 2015, 7, 19099-19109.
[40]
Popov, V. I.; Nikolaev, D. V.; Timofeev, V. B.; Smagulova, S. A.; Antonova, I. V. Graphene-based humidity sensors: The origin of alternating resistance change. Nanotechnology 2017, 28, 355501.
[41]
Feng, X. Y.; Chen, W. F.; Yan, L. F. Free-standing dried foam films of graphene oxide for humidity sensing. Sens. Actuators B: Chem. 2015, 215, 316-322.
[42]
Phan, D. T.; Chung, G. S. Effects of rapid thermal annealing on humidity sensor based on graphene oxide thin films. Sens. Actuators B: Chem. 2015, 220, 1050-1055.
[43]
Park, S. Y.; Kim, Y. H.; Lee, S. Y.; Sohn, W.; Lee, J. E.; Kim, D. H.; Shim, Y. S.; Kwon, K. C.; Choi, K. S.; Yoo, H. J. et al. Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 2018, 6, 5016-5024.
[44]
Phan, D. T.; Park, I.; Park, A. R.; Park, C. M.; Jeon, K. J. Black P/graphene hybrid: A fast response humidity sensor with good reversibility and stability. Sci. Rep. 2017, 7, 10561.
[45]
Liu, B. L.; Chen, L.; Liu, G.; Abbas, A. N.; Fathi, M.; Zhou, C. W. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 2014, 8, 5304-5314.
[46]
Javey, A.; Kong, J. Carbon Nanotube Electronics; Springer: New York, 2009.
[47]
Shukla, V.; Wärnå, J.; Jena, N. K.; Grigoriev, A.; Ahuja, R. Toward the realization of 2D borophene based gas sensor. J. Phys. Chem. C 2017, 121, 26869-26876.
[48]
Wu, E. X.; Xie, Y.; Yuan, B.; Zhang, H.; Hu, X. D.; Liu, J.; Zhang, D. H. Ultrasensitive and fully reversible NO2 gas sensing based on p-Type MoTe2 under ultraviolet illumination. ACS Sens. 2018, 3, 1719-1726.
[49]
Jeong, H. S.; Park, M. J.; Kwon, S. H.; Joo, H. J.; Kwon, H. I. Highly sensitive and selective room-temperature NO2 gas-sensing characteristics of SnOx-based p-type thin-film transistor. Sens. Actuators B: Chem. 2019, 288, 625-633.
[50]
Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119, 478-598
[51]
Wan, P. B.; Wen, X. M.; Sun, C. Z.; Chandran, B. K.; Zhang, H.; Sun, X. M.; Chen, X. D. Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high- performance gas sensing. Small 2015, 11, 5409-5415.
[52]
Yang, S.; Liu, Y. L.; Chen, W.; Jin, W.; Zhou, J.; Zhang, H.; Zakharova, G. S. High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sens. Actuators B: Chem. 2016, 226, 478-485.
[53]
Liu, J.; Jiang, X. T.; Zhang, R. Y.; Zhang, Y.; Wu, L. M.; Lu, W.; Li, J. Q.; Li, Y. C.; Zhang, H. MXene-enabled electrochemical microfluidic biosensor: Applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater. 2019, 29, 1807326.
File
12274_2020_3232_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 September 2020
Revised: 22 October 2020
Accepted: 09 November 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61774085), the Natural Science Foundation of Jiangsu Province (No. BK20201300), the Six Talent Peaks Project in Jiangsu Province (No. XCL-046), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (NUAA) (No. MCMS-I-0420G02), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Return