Journal Home > Volume 14 , Issue 7

Strain engineering is proposed to be an effective technology to tune the properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs). Conventional strain engineering techniques (e.g., mechanical bending, heating) cannot conserve strain due to their dependence on external action, which thereby limits the application in electronics. In addition, the theoretically predicted strain-induced tuning of electrical performance of TMDCs has not been experimentally proved yet. Here, a facile but effective approach is proposed to retain and tune the biaxial tensile strain in monolayer MoS2 by adjusting the process of the chemical vapor deposition (CVD). To prove the feasibility of this method, the strain formation model of CVD grown MoS2 is proposed which is supported by the calculated strain dependence of band gap via the density functional theory (DFT). Next, the electrical properties tuning of strained monolayer MoS2 is demonstrated in experiment, where the carrier mobility of MoS2 was increased by two orders (~ 0.15 to ~ 23 cm2·V-1·s-1). The proposed pathway of strain preservation and regulation will open up the optics application of strain engineering and the fabrication of high performance electronic devices in 2D materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Carrier mobility tuning of MoS2 by strain engineering in CVD growth process

Show Author's information Yongfeng Chen1,§Wenjie Deng1,§Xiaoqing Chen1( )Yi Wu1Jianwei Shi3Jingying Zheng2Feihong Chu1Beiyun Liu1Boxing An1Congya You1Liying Jiao2Xinfeng Liu3Yongzhe Zhang1( )
College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials of Education Ministry of China, Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

§ Yongfeng Chen and Wenjie Deng contributed equally to this work.

Abstract

Strain engineering is proposed to be an effective technology to tune the properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs). Conventional strain engineering techniques (e.g., mechanical bending, heating) cannot conserve strain due to their dependence on external action, which thereby limits the application in electronics. In addition, the theoretically predicted strain-induced tuning of electrical performance of TMDCs has not been experimentally proved yet. Here, a facile but effective approach is proposed to retain and tune the biaxial tensile strain in monolayer MoS2 by adjusting the process of the chemical vapor deposition (CVD). To prove the feasibility of this method, the strain formation model of CVD grown MoS2 is proposed which is supported by the calculated strain dependence of band gap via the density functional theory (DFT). Next, the electrical properties tuning of strained monolayer MoS2 is demonstrated in experiment, where the carrier mobility of MoS2 was increased by two orders (~ 0.15 to ~ 23 cm2·V-1·s-1). The proposed pathway of strain preservation and regulation will open up the optics application of strain engineering and the fabrication of high performance electronic devices in 2D materials.

Keywords: MoS2, 2D materials, strain engineering, CVD, carrier mobility

References(59)

[1]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[2]
Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H..; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.
[3]
Su, S. Q.; Zhou, Q. W.; Zeng, Z. Q.; Hu, D.; Wang, X.; Jin, M. L.; Gao, X. S.; Nötzel, R.; Zhou, G. F.; Zhang, Z. et al. Ultrathin alumina mask-assisted nanopore patterning on monolayer MoS2 for highly catalytic efficiency in hydrogen evolution reaction. Acs Appl. Mater. Interfaces 2018, 10, 8026-8035.
[4]
Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single- layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998-6001.
[5]
Lu, P.; Wu, X. J.; Guo, W. L.; Zeng, X. C. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 2012, 14, 13035-13040.
[6]
Pan, H.; Zhang, Y. W. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. J. Phys. Chem. C 2012, 116, 11752-11757.
[7]
Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944-5948.
[8]
Gong, Y. J.; Liu, Z.; Lupini, A. R.; Shi, G.; Lin, J. H.; Najmaei, S.; Lin, Z.; Elía, A. L.; Berkdemir, A.; You, G. et al. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 2014, 14, 442-449.
[9]
Zhang, K. H.; Feng, S. M.; Wang, J. J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C. J.; Lerach, J.; Bojan, V. et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586-6591.
[10]
Komsa, H. P.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B 2013, 88, 035301.
[11]
Miró, P.; Ghorbani-Asl, M.; Heine, T. Spontaneous ripple formation in MoS2 monolayers: Electronic structure and transport effects. Adv. Mater. 2013, 25, 5473-5475.
[12]
Luo, S. W.; Hao, G. L.; Fan, Y. P.; Kou, L. Z.; He, C. Y.; Qi, X.; Tang, C.; Li, J.; Huang, K.; Zhong, J. X. Formation of ripples in atomically thin MoS2 and local strain engineering of electrostatic properties. Nanotechnology 2015, 26, 105705.
[13]
Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576-5580.
[14]
Johari, P.; Shenoy, V. B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. Acs Nano 2012, 6, 5449-5456.
[15]
Amin, B.; Kaloni, T. P.; Schwingenschlogl, U. Strain engineering of WS2, WSe2, and WTe2. RSC Adv. 2014, 4, 34561-34565.
[16]
Peelaers, H.; Van De Walle, C. G. Effects of strain on band structure and effective masses in MoS2. Phys. Rev. B 2012, 86, 241401(R).
[17]
Shi, H. L.; Pan, H.; Zhang, Y. W.; Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 2013, 87, 155304.
[18]
Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246.
[19]
Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F., Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626-3630.
[20]
He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931-2936.
[21]
Amani, M.; Chin, M. L.; Mazzoni, A. L.; Burke, R. A.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Dubey, M. Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors. Appl. Phys. Lett. 2014, 104, 203506.
[22]
Plechinger, G.; Castellanos-Gomez, A.; Buscema, M.; van der Zant, H. S. J.; Steele, G. A.; Kuc, A.; Heine, T.; Schüller, C.; Korn, T. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2015, 2, 015006.
[23]
Lloyd, D.; Liu, X. H.; Christopher, J. W.; Cantley, L.; Wadehra, A.; Kim, B. L.; Goldberg, B. B.; Swan, A. K.; Bunch, J. Scott. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 2016, 16, 5836-5841.
[24]
Zhu, C. R.; Wang, G.; Liu, B. L.; Marie, X.; Qiao, X. F.; Zhang, X.; Wu, X. X.; Fan, H.; Tan, P. H.; Amand, T. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 2013, 88, 121301(R).
[25]
Pak, S.; Lee, J.; Lee, Y. W.; Jang, A. R.; Ahn, S.; Ma, K. Y.; Cho, Y.; Hong, J.; Lee, S.; Jeong, H. Y. et al. Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/ WS2 van der Waals Heterobilayer. Nano Lett. 2017, 17, 5634-5640.
[26]
Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D. H.; Mastandrea, J. P.; Ager III, J. W.; Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608.
[27]
Wang, Z. Q.; Shen, Y. H.; Ito, Y.; Zhang, Y. Z.; Du, J.; Fujita, T.; Hirata, A.; Tang, Z.; Chen, M. W. Synthesizing 1T-1H two-phase Mo1-xWxS2 monolayers by chemical vapor deposition. Acs Nano 2018, 12, 1571-1579
[28]
Zhang, B. Y.; Liu, T.; Meng, B.; Li, X. H.; Liang, G. Z.; Hu, X. N.; Wang, Q. J. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 2013, 4, 1811.
[29]
Yang, S. Y.; Shim, G. W.; Seo, S. B.; Choi, S. Y. Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Res. 2017, 10, 255-262.
[30]
Zheng, J. Y.; Yan, X. X.; Lu, Z. X.; Qiu, H. L.; Xu, G. C.; Zhou, X.; Wang, P.; Pan, X. Q.; Liu, K. H.; Jiao, L. Y. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. 2017, 29, 1604540.
[31]
Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
[32]
Jeon, J.; Jang, S. K.; Jeon, S. M.; Yoo, G.; Jang, Y. H.; Park, J. H.; Lee, S. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale 2015, 7, 1688-1695.
[33]
Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754-759.
[34]
Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. Acs Nano 2010, 4, 2695-2700.
[35]
Rong, Y. M.; He, K.; Pacios, M.; Robertson, A. W.; Bhaskaran, H.; Warner, J. H. Controlled preferential oxidation of grain boundaries in monolayer tungsten disulfide for direct optical imaging. Acs Nano 2015, 9, 3695-3703.
[36]
Hao, S.; Yang, B. C.; Gao, Y. L. Quenching induced fracture behaviors of CVD-grown polycrystalline molybdenum disulfide films. RSC Adv. 2016, 6, 59816-59822.
[37]
Gao, J.; Li, B. C.; Tan, J. W.; Chow, P.; Lu, T. M.; Koratkar, N. Aging of transition metal dichalcogenide monolayers. Acs Nano 2016, 10, 2628-2635.
[38]
Mennel, L.; Furchi, M. M.; Wachter, S.; Paur, M.; Polyushkin, D. K.; Mueller, T. Optical imaging of strain in two-dimensional crystals. Nat. Commun. 2018, 9, 516.
[39]
Liang, J.; Zhang, J.; Li, Z. Z.; Hong, H.; Wang, J. H.; Zhang, Z. H.; Zhou, X.; Qiao, R. X.; Xu, J. Y.; Gao, P. et al. Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano Lett. 2017, 17, 7539-7543.
[40]
Sinha, A. K.; Levinstein, H. J.; Smith, T. E. Thermal stresses and cracking resistance of dielectric films (SiN, Si3N4, and SiO2) on Si substrates. J. Appl. Phys. 1978, 49, 2423-2426.
[41]
El-Mahalawy, S. H.; Evans, B. L. The thermal expansion of 2H-MoS2, 2H-MoSe2 and 2H-WSe2 between 20 and 800°C. J. Appl. Crystallogr. 1976, 9, 403-406.
[42]
Gan, C. K.; Liu, Y. Y. F. Direct calculation of the linear thermal expansion coefficients of MoS2 via symmetry-preserving deformations. Phys. Rev. B 2016, 94, 134303.
[43]
Nix, W. D. Mechanical properties of thin films. Metall. Trans. A 1989, 20, 2217.
[44]
Scalise, E.; Houssa, M.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43-48.
[45]
Jiang, T.; Huang, R.; Zhu, Y. Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Adv. Funct. Mater. 2014, 24, 396-402.
[46]
Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2008, 2, 2301-2305.
[47]
Zhang, C. D.; Li, M. Y.; Tersoff, J.; Han, Y. M.; Su, Y. S.; Li, L. J.; Muller, D. A.; Shih, C. K. Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 2018, 13, 152-158.
[48]
Rice, C.; Young, R. J.; Zan.; R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B 2013, 87, 081307(R).
[49]
Mao, N. N.; Chen, Y. F.; Liu, D. M.; Zhang, J.; Xie, L. M. Solvatochromic Effect on the Photoluminescence of MoS2 Monolayers. Small 2013, 9, 1312-1315.
[50]
Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403(R).
[51]
Sun, L. F.; Leong, W. S.; Yang, S. Z.; Chisholm, M. F.; Liang, S. J.; Ang, L. K.; Tang, Y. J.; Mao, Y. W.; Kong, J.; Yang, H. Y. Concurrent synthesis of high-performance monolayer transition metal disulfides. Adv. Funct. Mater. 2017, 27, 1605896.
[52]
Han, G. H.; Kybert, N. J.; Naylor, C. H.; Lee, B. S.; Ping, J. L.; Park, J. H.; Kang, J.; Lee, S. Y.; Lee, Y. H.; Agarwal, R. et al. Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nat. Commun. 2015, 6, 6128.
[53]
Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.
[54]
Ju, M.; Liang, X. Y.; Liu, J. X.; Zhou, L.; Liu, Z.; Mendes, R. G.; Rümmeli, M. H.; Fu, L. Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals. Chem. Mater. 2017, 29, 6095-6103.
[55]
Chan, V.; Rim, K.; Ieong, M.; Yang, S.; Malik, R.; Teh, Y. W.; Yang, M.; Qi, Q. Strain for CMOS performance improvement. In Proceedings of IEEE 2005 Custom Integrated Circuits Conference, San Jose, USA, 2005, pp 667-674.
[56]
Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.
[57]
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.
[58]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[59]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
File
12274_2020_3228_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 January 2020
Revised: 30 October 2020
Accepted: 09 November 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the National Science Foundation of China (Nos. 61922005, U1930105, 21673054 and 11874130), Beijing Natural Science Foundation (No. JQ20027), the Beijing Excellent Talent Program, the Equipment Pre-research Project of China Electronics Technology Group Corporation (CETC) (No. 6141B08110104), and the General Program of Science and Technology Development Project of Beijing Municipal Education Commission (No. KM202010005005). All authors thank Prof. Danmin Liu, Prof. Hui Yan, Yang Ma and Peng Wang for disscussion.

Return