Journal Home > Volume 14 , Issue 7

In this study, the size of the titanium organic cage was controlled to achieve the restricted growth from a single Ag(I) atom (Ag@Ti5) to rare all-carboxylate-protected superatomic Ag cluster (Ag6@Ti6). The classical octahedral Ag64+ cluster with two delocalized electrons (2e) has been encapsulated in a Ti6 organic cage, which shows high stability in air and dimethyformamide (DMF). Furthermore, larger 2e nested double-tetrahedra Ag clusters (Ag86+ and Ag97+) protected using a tetrahedral hollow metalloligand framework (Ag8@Ti4 and Ag9@Ti4) were obtained. Electrospray ionization mass spectrometry (ESI-MS) and density functional theory (DFT) calculations confirmed that there are two delocalized electrons on these small Ag clusters. This study provides a new form of protection for superatomic Ag clusters and provides a feasible strategy for the development of stable Ag clusters.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Evolution of all-carboxylate-protected superatomic Ag clusters confined in Ti-organic cages

Show Author's information Xi-Ming Luo1Chun-Hua Gong1Xi-Yan Dong1,2Lei Zhang3 ( )Shuang-Quan Zang1( )
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

Abstract

In this study, the size of the titanium organic cage was controlled to achieve the restricted growth from a single Ag(I) atom (Ag@Ti5) to rare all-carboxylate-protected superatomic Ag cluster (Ag6@Ti6). The classical octahedral Ag64+ cluster with two delocalized electrons (2e) has been encapsulated in a Ti6 organic cage, which shows high stability in air and dimethyformamide (DMF). Furthermore, larger 2e nested double-tetrahedra Ag clusters (Ag86+ and Ag97+) protected using a tetrahedral hollow metalloligand framework (Ag8@Ti4 and Ag9@Ti4) were obtained. Electrospray ionization mass spectrometry (ESI-MS) and density functional theory (DFT) calculations confirmed that there are two delocalized electrons on these small Ag clusters. This study provides a new form of protection for superatomic Ag clusters and provides a feasible strategy for the development of stable Ag clusters.

Keywords: stability, atomic precision, superatomic silver cluster, titanium organic cage

References(43)

[1]
Zhao, X. L.; Zang, S. Q.; Chen, X. Y. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem. Soc. Rev. 2020, 49, 2481-2503.
[2]
He, L. Z.; Gan, Z. B.; Xia, N.; Liao L. W.; Wu, Z. K. Alternating array stacking of Ag26Au and Ag24Au nanoclusters. Angew. Chem., Int. Ed. 2019, 58, 9897-9901.
[3]
Han, Z.; Dong, X. Y.; Luo, P.; Li, S.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Sci. Adv. 2020, 6, eaay0107.
[4]
Wilson, R. J.; Lichtenberger, N.; Weinert, B.; Dehnen, S. Intermetalloid and heterometallic clusters combining p-block (semi)metals with d- or f-block metals. Chem. Rev. 2019, 119, 8506-8554.
[5]
Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084-3093.
[6]
Bhattarai, B.; Zaker, Y.; Atnagulov, A.; Yoon, B.; Landman, U.; Bigioni, T. P. Chemistry and structure of silver molecular nanoparticles. Acc. Chem. Res. 2018, 51, 3104-3113.
[7]
Yao, Q. F.; Chen, T. K.; Yuan, X.; Xie, J. P. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 2018, 51, 1338-1348.
[8]
Fuhr, O.; Dehnen, S.; Fenske, D. Chalcogenide clusters of copper and silver from silylated chalcogenide sources. Chem. Soc. Rev. 2013, 42, 1871-1906.
[9]
Li, S.; Du, X. S.; Li, B.; Wang, J. Y.; Li, G. P.; Gao, G. G.; Zang, S. Q. Atom-precise modification of silver(I) thiolate cluster by shell ligand substitution: A new approach to generation of cluster functionality and chirality. J. Am. Chem. Soc. 2018, 140, 594-597.
[10]
Kikukawa, Y.; Kuroda, Y.; Suzuki, K.; Hibino, M.; Yamaguchi, K.; Mizuno, N. A discrete octahedrally shaped [Ag6]4+ cluster encapsulated within silicotungstate ligands. Chem. Commun. 2013, 49, 376-378.
[11]
Yonesato, K.; Ito, H.; Itakura, H.; Yokogawa, D.; Kikuchi, T.; Mizuno, N.; Yamaguchi, K.; Suzuki, K. Controlled assembly synthesis of atomically precise ultrastable silver nanoclusters with polyoxometalates. J. Am. Chem. Soc. 2019, 141, 19550-19554.
[12]
Yonesato, K.; Ito, H.; Yokogawa, D.; Yamaguchi, K.; Suzuki, K. An ultrastable, Small {Ag7}5+ nanocluster within a triangular hollow polyoxometalate framework. Angew. Chem., Int. Ed. 2020, 59, 16361-16365.
[13]
Zhou, W.; Li, T.; Wang, J. Q.; Qu, Y.; Pan, K.; Xie, Y.; Tian, G. H.; Wang, L.; Ren, Z. Y.; Jiang, B. J. et al. Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Res. 2014, 7, 731-742.
[14]
Sun, L. L.; Yun, Y. P.; Sheng, H. T.; Du, Y. X.; Ding, Y. M.; Wu, P.; Li, P.; Zhu, M. Z. Rational encapsulation of atomically precise nanoclusters into metal-organic frameworks by electrostatic attraction for CO2 conversion. J. Mater. Chem. A 2018, 6, 15371-15376.
[15]
Liu, L. L.; Song, Y. B.; Chong, H. B.; Yang, S.; Xiang, J.; Jin, S.; Kang, X.; Zhang, J.; Yu H. Z.; Zhu, M. Z. Size-confined growth of atom-precise nanoclusters in metal-organic frameworks and their catalytic applications. Nanoscale 2016, 8, 1407-1412.
[16]
Fenwick, O.; Coutiño-Gonzalez, E.; Grandjean, D.; Baekelant, W.; Richard, F.; Bonacchi, S.; De Vos, D.; Lievens, P.; Roeffaers, M.; Hofkens J. et al. Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. Nat. Mater. 2016, 15, 1017-1022.
[17]
Chen, S.; Fang, W. H.; Zhang, L.; Zhang, J. Atomically precise multimetallic semiconductive nanoclusters with optical limiting effects. Angew. Chem., Int. Ed. 2018, 57, 11252-11256.
[18]
Gao, M. Y.; Wang, K.; Sun, Y. Y.; Li, D. J.; Song, B. Q.; Andaloussi, Y. H.; Zaworotko, M. J.; Zhang J.; Zhang, L. Tetrahedral geometry induction of stable Ag-Ti nanoclusters by flexible trifurcate TiL3 metalloligand. J. Am. Chem. Soc. 2020, 142, 12784-12790.
[19]
Chen, S.; Chen, Z. N.; Fang, W. H.; Zhuang, W.; Zhang, L.; Zhang, J. Ag10Ti28-oxo cluster containing single-atom silver sites: Atomic structure and synergistic electronic properties. Angew. Chem., Int. Ed. 2019, 58, 10932-10935.
[20]
Yu, Y. Z.; Guo, Y.; Zhang, Y. R.; Liu, M. M.; Feng, Y. R.; Geng C. H.; Zhang, X. M. A series of silver doped butterfly-like Ti8Ag2 clusters with two Ag ions panelled on a Ti8 surface. Dalton Trans. 2019, 48, 13423-13429.
[21]
Hou, S. M.; Li, Q. H.; Ding, Q. R.; Kang, Y.; Zhang J.; Zhang, L. Heterometallic Ag2Ti10 and Ag4Ti8-oxo clusters with different silver doping models: Synthesis, structure, and theoretical studies. Dalton Trans. 2020, 49, 11005-11009.
[22]
Liu, Y. J.; Shao, P.; Gao, M. Y.; Fang, W. H.; Zhang, J. Synthesis of Ag-doped polyoxotitanium nanoclusters for efficient electrocatalytic CO2 reduction. Inorg. Chem. 2020, 59, 11442-11448.
[23]
He, Y. P.; Yuan, L. B.; Chen, G. H.; Lin, Q. P.; Wang, F.; Zhang L.; Zhang J. Water-soluble and ultrastable Ti4L6 tetrahedron with coordination assembly function. J. Am. Chem. Soc. 2017, 139, 16845-16851.
[24]
Zhu, B. C.; Fang, W. H.; Wang, J. H.; Du, Y. H.; Zhou, T. H.; Wu, K. F.; Zhang L.; Zhang J. Host-guest and photophysical behavior of Ti8L12 cube with encapsulated [Ti(H2O)6] species. Chem.—Eur. J. 2018, 24, 14358-14362.
[25]
Liu, C. Y.; Hu, J. Y.; Liu, W. M.; Zhu, F.; Wang, G.; Tung, C. H.; Wang, Y. F. Binding modes of salicylic acids to titanium oxide molecular surfaces. Chem.—Eur. J. 2020, 26, 2666-2674.
[26]
Zhu, B. C.; Fang, W. H.; Emayavaramban, P.; Zhang L.; Zhang, J. Structures and photophysical performances of (fluoro)salicylate stabilized polyoxo-titanium clusters. CrystEngComm 2018, 20, 5964-5968.
[27]
Fang, W. H.; Zhang L.; Zhang, J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47, 404-421.
[28]
Liu, K. G.; Gao, X. M.; Liu, T. Y.; Hu M. L.; Jiang, D. E. All- carboxylate-protected superatomic silver nanocluster with an unprecedented rhombohedral Ag8 core. J. Am. Chem. Soc. 2020, 142, 16905-16909.
[29]
Schmidbaur, H.; Schier, A. Argentophilic interactions. Angew. Chem., Int. Ed. 2015, 54, 746-784.
[30]
Liu, C. W.; Chang, H. W.; Sarkar, B.; Saillard, J. Y.; Kahlal, S.; Wu, Y. Y. Stable silver(I) hydride complexes supported by diselenophosphate ligands. Inorg. Chem. 2010, 49, 468-475.
[31]
Liu, C. W.; Chang, H. W.; Fang, C. S.; Sarkar, B.; Wang, J. C. Anion- templated syntheses of octanuclear silverclusters from a silver dithiophosphate chain. Chem. Commun. 2010, 46, 4571-4573.
[32]
Wang, Z. Y.; Wang, M. Q.; Li, Y. L.; Luo, P.; Jia, T. T.; Huang, R. W.; Zang, S. Q.; Mak, T. C. W. Atomically precise site-specific tailoring and directional assembly of superatomic silver nanoclusters. J. Am. Chem. Soc. 2018, 140, 1069-1076.
[33]
Yang, H. Y.; Lei, J.; Wu, B. H.; Wang, Y.; Zhou, M. Xia, A. D.; Zheng, L. S.; Zheng, N. F. Crystal structure of a luminescent thiolated Ag nanocluster with an octahedral Ag64+ core. Chem. Commun. 2013, 49, 300-302.
[34]
Wang, Z.; Liu, J. W.; Su, H. F.; Zhao, Q. Q.; Kurmoo, M.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. Chalcogens-induced Ag6Z4@Ag36 (Z = S or Se) core-shell nanoclusters: Enlarged tetrahedral core and homochiral crystallization. J. Am. Chem. Soc. 2019, 141, 17884-17890.
[35]
Wang, Z.; Su, H. F.; Kurmoo, M.; Tung, C. H.; Sun, D.; Zheng, L. S. Trapping an octahedral Ag6 kernel in a seven-fold symmetric Ag56 nanowheel. Nat. Commun. 2018, 9, 2094.
[36]
Liu, C.; Li, T.; Abroshan, H.; Li, Z. M.; Zhang, C.; Kim, H. J.; Li, G.; Jin, R. C. Chiral Ag23 nanocluster with open shell electronic structure and helical face-centered cubic framework. Nat. Commun. 2018, 9, 744.
[37]
Lan, K.; Wang, R. C.; Wei, Q. L.; Wang, Y. X.; Hong, A.; Feng, P. Y.; Zhao, D. Y. Stable Ti3+ defects in oriented mesoporous titania frameworks for efficient photocatalysis. Angew. Chem., Int. Ed. 2020, 59, 17676-17683.
[38]
Zuo, F.; Bozhilov, K.; Dillon, R. J.; Wang, L.; Smith, P.; Zhao, X.; Bardeen, C.; Feng, P. Y. Active facets on titanium(III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angew. Chem., Int. Ed. 2012, 51, 6223-6226.
[39]
Zuo, F.; Wang, L.; Wu, T.; Zhang, Z. Y.; Borchardt, D.; Feng, P. Y. Self- doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 2010, 132, 11856-11857.
[40]
Jin, S.; Wang, S. X.; Song, Y. B.; Zhou, M.; Zhong, J.; Zhang, J.; Xia, A. D.; Pei, Y.; Chen, M.; Li, P. et al. Crystal structure and optical properties of the [Ag62S12(SBut)32]2+ nanocluster with a complete face- centered cubic kernel. J. Am. Chem. Soc. 2014, 136, 15559-15565.
[41]
Jin, S.; Wang, S. X.; Xiong, L.; Zhou, M.; Chen, S.; Du, W. J.; Xia, A. D.; Pei, Y.; Zhu, M. Z. Two electron reduction: From quantum dots to metal nanoclusters. Chem. Mater. 2016, 28, 7905-7911.
[42]
AbdulHalim, L. G.; Bootharaju, M. S.; Tang, Q.; Del Gobbo, S.; AbdulHalim, R. G.; Eddaoudi, M.; Jiang, D. E.; Bakr, O. M. Ag29(BDT)12(TPP)4: A tetravalent nanocluster. J. Am. Chem. Soc. 2015, 137, 11970-11975.
[43]
Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed O. F.; Bakr, O. M. Templated atom-precise Galvanic synthesis and structure elucidation of a [Ag24Au(SR)18]- nanocluster. Angew. Chem., Int. Ed. 2016, 55, 922-926.
File
12274_2020_3227_MOESM1_ESM.cif (3.1 MB)
12274_2020_3227_MOESM2_ESM.cif (2.6 MB)
12274_2020_3227_MOESM3_ESM.cif (1.2 MB)
12274_2020_3227_MOESM4_ESM.cif (3 MB)
12274_2020_3227_MOESM5_ESM.cif (2.8 MB)
12274_2020_3227_MOESM6_ESM.cif (3.1 MB)
12274_2020_3227_MOESM7_ESM.cif (2.7 MB)
12274_2020_3227_MOESM8_ESM.cif (687.6 KB)
12274_2020_3227_MOESM9_ESM.cif (1.6 MB)
12274_2020_3227_MOESM10_ESM.cif (1.7 MB)
12274_2020_3227_MOESM11_ESM.cif (3.2 MB)
12274_2020_3227_MOESM12_ESM.cif (1.4 MB)
12274_2020_3227_MOESM13_ESM.pdf (306.5 KB)
12274_2020_3227_MOESM14_ESM.pdf (300.5 KB)
12274_2020_3227_MOESM15_ESM.pdf (262.8 KB)
12274_2020_3227_MOESM16_ESM.pdf (297.2 KB)
12274_2020_3227_MOESM17_ESM.pdf (257.5 KB)
12274_2020_3227_MOESM18_ESM.pdf (237.3 KB)
12274_2020_3227_MOESM19_ESM.pdf (262.1 KB)
12274_2020_3227_MOESM20_ESM.pdf (307.6 KB)
12274_2020_3227_MOESM21_ESM.pdf (247.4 KB)
12274_2020_3227_MOESM22_ESM.pdf (232.9 KB)
12274_2020_3227_MOESM23_ESM.pdf (265.2 KB)
12274_2020_3227_MOESM24_ESM.pdf (209.2 KB)
12274_2020_3227_MOESM25_ESM.pdf (5.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 September 2020
Revised: 05 November 2020
Accepted: 06 November 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (No. 21825106), the National Natural Science Foundation of China (Nos. 21975065 and 21671175), the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 164100510005), and the Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province (No. 19IRTSTHN022) and Zhengzhou University.

Return