Journal Home > Volume 14 , Issue 7

The construction of advanced electrode materials is key to the field of energy storage. Herein, a free-standing anatase titania (TiO2) nanocrystal/carbon nanotube (CNT) film is reported using a simple and scalable sol-gel method, followed by calcination. This unique free-standing film comprises ultra-small TiO2 nanocrystals (~ 5.9 nm) and super-aligned CNTs, with ultra-dispersed TiO2 nanocrystals on the surfaces of the CNTs. On the one hand, these TiO2 nanocrystals can significantly decrease the diffusion distance of the charges and on the other hand, the cross-linked CNTs can act as a three-dimensional (3D) conductive network, allowing the fast transport of electrons. In addition, the film is free-standing, without requiring electrode fabrication and additional conductive agents and binders. Owing to these above synergistic effects, the film is directly used as an anode in Li-ion batteries, and delivers a high discharge capacity of ~ 105 mAh·g-1 at high rate of 60 C (1 C = 170 mA·g-1) and excellent cycling performance over 2,500 cycles at 30 C. These results indicate that the free-standing anatase TiO2 nanocrystal/CNT film affords a superior performance among the various TiO2 materials and can be a promising anode material for fast-charging Li-ion batteries. Moreover, the TiO2/CNT film exhibits an areal capacity of up to 2.4 mAh·cm-2, confirming the possibility of its practical use.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Free-standing hybrid films comprising of ultra-dispersed titania nanocrystals and hierarchical conductive network for excellent high rate performance of lithium storage

Show Author's information Kunlei Zhu1,2( )Chenyu Li2Yushuang Jiao1Jiawen Zhu1Hongtao Ren3Yufeng Luo4Shoushan Fan4Kai Liu2( )
College of Chemistry and Chemical Engineering, Qufu Normal University, Jingxuan West Road NO.57, Qufu 273165, China
State Key Laboratory of New Ceramics and Fine Processing, and Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
School of Materials Science and Engineering, Liaocheng University, Hunan Road No. 1, Liaocheng 252000, China
Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China

Abstract

The construction of advanced electrode materials is key to the field of energy storage. Herein, a free-standing anatase titania (TiO2) nanocrystal/carbon nanotube (CNT) film is reported using a simple and scalable sol-gel method, followed by calcination. This unique free-standing film comprises ultra-small TiO2 nanocrystals (~ 5.9 nm) and super-aligned CNTs, with ultra-dispersed TiO2 nanocrystals on the surfaces of the CNTs. On the one hand, these TiO2 nanocrystals can significantly decrease the diffusion distance of the charges and on the other hand, the cross-linked CNTs can act as a three-dimensional (3D) conductive network, allowing the fast transport of electrons. In addition, the film is free-standing, without requiring electrode fabrication and additional conductive agents and binders. Owing to these above synergistic effects, the film is directly used as an anode in Li-ion batteries, and delivers a high discharge capacity of ~ 105 mAh·g-1 at high rate of 60 C (1 C = 170 mA·g-1) and excellent cycling performance over 2,500 cycles at 30 C. These results indicate that the free-standing anatase TiO2 nanocrystal/CNT film affords a superior performance among the various TiO2 materials and can be a promising anode material for fast-charging Li-ion batteries. Moreover, the TiO2/CNT film exhibits an areal capacity of up to 2.4 mAh·cm-2, confirming the possibility of its practical use.

Keywords: carbon nanotubes, TiO2, high rate, Li-ion batteries, free-standing, ultra-small

References(54)

[1]
Patel, P. Improving the lithium-ion battery. ACS Cent. Sci. 2015, 1, 161-162.
[2]
Bresser, D.; Hosoi, K.; Howell, D.; Li, H.; Zeisel, H.; Amine, K.; Passerini, S. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. J. Power Sources 2018, 382, 176-178.
[3]
Zhao, W. G.; Zheng, J. M.; Zou, L. F.; Jia, H. P.; Liu, B.; Wang, H.; Engelhard, M. H.; Wang, C. M.; Xu, W.; Yang, Y. et al. High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/ electrolyte interphases. Adv. Energy Mater. 2018, 8, 1800297.
[4]
Li, W. D.; Lee, S.; Manthiram, A. High-nickel NMA: A cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 2020, 32, 2002718.
[5]
Li, Y. Z.; Yan, K.; Lee, H. W.; Lu, Z. D.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029.
[6]
Tao, W.; Wang, P.; You, Y.; Park, K.; Wang, C. Y.; Li, Y. K.; Cao, F. F.; Xin, S. Strategies for improving the storage performance of silicon- based anodes in lithium-ion batteries. Nano Res. 2019, 12, 1739-1749.
[7]
Wang, B.; Ryu, J.; Choi, S.; Zhang, X. H.; Pribat, D.; Li, X. L.; Zhi, L. J.; Park, S.; Ruoff, R. S. Ultrafast-charging silicon-based coral- like network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 2019, 13, 2307-2315.
[8]
Zhu, K. L.; Li, Q.; Xue, Z. M.; Yu, Q.; Liu, X. C.; Shan, Z. Q.; Liu, K. Mesoporous TiO2 spheres as advanced anodes for low-cost, safe, and high-areal-capacity lithium-ion full batteries. ACS Appl. Nano Mater. 2020, 3, 1019-1027.
[9]
Li, N.; Zhou, G. M.; Fang, R. P.; Li, F.; Cheng, H. M. TiO2/graphene sandwich paper as an anisotropic electrode for high rate lithium ion batteries. Nanoscale 2013, 5, 7780-7784.
[10]
Wang, D. H.; Choi, D.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G. et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907-914.
[11]
Hwang, C. H.; Kim, H. E.; Nam, I.; Bang, J. H. Polygonal multi-polymorphed Li4Ti5O12@rutile TiO2 as anodes in lithium-ion batteries. Nano Res. 2019, 12, 897-904.
[12]
Wang, Q.; Shen, L.; Xue, T.; Cheng, G.; Huang, C. Z.; Fan, H. J.; Feng, Y. P. Single-crystalline TiO2(B) nanobelts with unusual large exposed {100} facets and enhanced Li-storage capacity. Adv. Funct. Mater. 2020, 2002187.
[13]
Li, W.; Wang, F.; Feng, S. S.; Wang, J. X.; Sun, Z. K.; Li, B.; Li, Y. H.; Yang, J. P.; Elzatahry, A. A.; Xia, Y. Y. et al. Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high- performance lithium ion batteries. J. Am. Chem. Soc. 2013, 135, 18300-18303.
[14]
Qiu, B. C.; Xing, M. Y.; Zhang, J. L. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5852-5855.
[15]
Li, W.; Wang, F.; Liu, Y. P.; Wang, J. X.; Yang, J. P.; Zhang, L. J.; Elzatahry, A. A.; Al-Dahyan, D.; Xia, Y. Y.; Zhao, D. General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. Nano Lett. 2015, 15, 2186-2193.
[16]
Liu, H.; Li, W.; Shen, D. K.; Zhao, D. Y.; Wang, G. X. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 2015, 137, 13161-13166.
[17]
Zhu, K. L.; Liu, X. Y.; Du, J. Y.; Tian, J. H.; Wang, Y.; Liu, S. Z.; Shan, Z. Q. In situ synthesis of mesoporous single-grain layer anatase TiO2 nanosheets without additives via a mild and simple process for a long-term Li-ion battery. J. Mater. Chem. A 2015, 3, 6455-6463.
[18]
Guan, B. Y.; Yu, L.; Li, J.; Lou, X. W. D. A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties. Sci. Adv. 2016, 2, e1501554.
[19]
Zhu, K. L.; Sun, Y. H.; Wang, R. M.; Shan, Z. Q.; Liu, K. Fast synthesis of uniform mesoporous titania submicrospheres with high tap densities for high-volumetric performance Li-ion batteries. Sci. China Mater. 2017, 60, 304-314.
[20]
Yu, W. B.; Hu, Z. Y.; Jin, J.; Yi, M.; Yan, M.; Li, Y.; Wang, H. E.; Gao, H. X.; Mai, L. Q.; Hasan, T. et al. Unprecedented and highly stable lithium storage capacity of (001) faceted nanosheet- constructed hierarchically porous TiO2/rGO hybrid architecture for high-performance Li-ion batteries. Natl. Sci. Rev. 2020, 7, 1046-1058.
[21]
Lee, D. H.; Lee, B. H.; Sinha, A. K.; Park, J. H.; Kim, M. S.; Park, J.; Shin, H.; Lee, K. S.; Sung, Y. E.; Hyeon, T. Engineering titanium dioxide nanostructures for enhanced lithium-ion storage. J. Am. Chem. Soc. 2018, 140, 16676-16684.
[22]
Wang, B. Y.; Yuan, W.; Zhang, X. M.; Xiang, M. W.; Zhang, Y.; Liu, H.; Wu, H. Sandwiching defect-Rich TiO2-δ nanocrystals into a three-dimensional flexible conformal carbon hybrid matrix for long-cycling and high-rate Li/Na-ion batteries. Inorg. Chem. 2019, 58, 8841-8853.
[23]
Modarres, M. H.; Engelke, S.; Jo, C.; Seveno, D.; De Volder, M. Self-assembly of hybrid nanorods for enhanced volumetric performance of nanoparticles in Li-ion batteries. Nano Lett. 2019, 19, 228-234.
[24]
Shin, J. Y.; Samuelis, D.; Maier, J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: Emphasis on interfacial storage phenomena. Adv. Funct. Mater. 2011, 21, 3464-3472.
[25]
Liu, S. H.; Wang, Z. Y.; Yu, C.; Wu, H. B.; Wang, G.; Dong, Q.; Qiu, J. S.; Eychmüller, A.; Lou, X. W. A flexible TiO2(B)-based battery electrode with superior power rate and ultralong cycle life. Adv. Mater. 2013, 25, 3462-3467.
[26]
He, L. F.; Wang, C. D.; Yao, X. L.; Ma, R. G.; Wang, H. K.; Chen, P. R.; Zhang, K. Synthesis of carbon nanotube/mesoporous TiO2 coaxial nanocables with enhanced lithium ion battery performance. Carbon 2014, 75, 345-352.
[27]
Wang, D. D.; Shan, Z. Q.; Na, R.; Huang, W. L.; Tian, J. H. Solvothermal synthesis of hedgehog-like mesoporous rutile TiO2 with improved lithium storage properties. J. Power Sources 2017, 337, 11-17.
[28]
Zhang, G. Q.; Wu, H. B.; Song, T.; Paik, U.; Lou, X. W. TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. Angew. Chem., Int. Ed. 2014, 53, 12590-12593.
[29]
Zhu, K. L.; Luo, Y. F.; Zhao, F.; Hou, J. W.; Wang, X. W.; Ma, H.; Wu, H.; Zhang, Y. G.; Jiang, K. L.; Fan, S. S. et al. Free-standing, binder- free titania/super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 3426-3433.
[30]
Zhang, L. H.; Qin, X. Y.; Zhao, S. Q.; Wang, A.; Luo, J.; Wang, Z. L.; Kang, F. Y.; Lin, Z. Q.; Li, B. H. Advanced matrixes for binder-free nanostructured electrodes in lithium-ion batteries. Adv. Mater. 2020, 32, 1908445.
[31]
Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700-705.
[32]
Jiang, K. L.; Wang, J. P.; Li, Q. L.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154-1161.
[33]
Sun, L.; Wang, D. T.; Luo, Y. F.; Wang, K.; Kong, W. B.; Wu, Y.; Zhang, L. N.; Jiang, K. L.; Li, Q. Q.; Zhang, Y. H. et al. Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries. ACS Nano 2016, 10, 1300-1308.
[34]
Zhang, Y.; Franklin, N. W.; Chen, R. J.; Dai, H. Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem. Phys. Lett. 2000, 331, 35-41.
[35]
Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638-641.
[36]
Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.
[37]
Huang, F. M.; Yue, K. T.; Tan, P. H.; Zhang, S. L.; Shi, Z.; Zhou, X.; Gu, Z. Temperature dependence of the Raman spectra of carbon nanotubes. J. Appl. Phys. 1998, 84, 4022-4024.
[38]
Alhomoudi, I. A.; Newaz, G. Residual stresses and Raman shift relation in anatase TiO2 thin film. Thin Solid Films 2009, 517, 4372-4378.
[39]
Zhu, K. L.; Tian, J. H.; Liu, Y. P.; Lin, N.; Tang, Q. W.; Yu, X. M.; Zhu, Y. M.; Shan, Z. Q. Submicron-sized mesoporous anatase TiO2 beads with a high specific surface synthesized by controlling reaction conditions for high-performance Li-batteries. RSC Adv. 2013, 3, 13149-13155.
[40]
Xing, Y. L.; Wang, S. B.; Fang, B. Z.; Song, G.; Wilkinson, D. P.; Zhang, S. C. N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries. J. Power Sources 2018, 385, 10-17.
[41]
Zhang, C.; Liu, S. T.; Qi, Y. C.; Cui, F. M.; Yang, X. J. Conformal carbon coated TiO2 aerogel as superior anode for lithium-ion batteries. Chem. Eng. J. 2018, 351, 825-831.
[42]
Yang, S. B.; Feng, X. L.; Müllen, K. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv. Mater. 2011, 23, 3575-3579.
[43]
Gao, M.; Bao, Y. B.; Qian, Y. X.; Deng, Y. F.; Li, Y. W.; Chen, G. H. Porous anatase-TiO2(B) dual-phase nanorods prepared from in situ pyrolysis of a single molecule precursor offer high performance lithium-ion storage. Inorg. Chem. 2018, 57, 12245-12254.
[44]
Luo, M.; Yu, X.; Zhao, W. X.; Xu, R. M.; Liu, Y.; Shen, H. Polymer- promoted synthesis of porous TiO2 nanofibers decorated with N-doped carbon by mechanical stirring for high-performance Li-ion storage. ACS Appl. Mater. Interfaces 2018, 10, 35060-35068.
[45]
Zhou, T. F.; Zheng, Y.; Gao, H.; Min, S. D.; Li, S.; Liu, H. K.; Guo, Z. P. Surface engineering and design strategy for surface-amorphized TiO2@graphene hybrids for high power Li-ion battery electrodes. Adv. Sci. 2015, 2, 1500027.
[46]
Petkovich, N. D.; Rudisill, S. G.; Wilson, B. E.; Mukherjee, A.; Stein, A. Control of TiO2 grain size and positioning in three-dimensionally ordered macroporous TiO2/C composite anodes for lithium ion batteries. Inorg. Chem. 2014, 53, 1100-1112.
[47]
Jo, M. S.; Park, G. D.; Kang, Y. C.; Cho, J. S. Design and synthesis of interconnected hierarchically porous anatase titanium dioxide nanofibers as high-rate and long-cycle-life anodes for lithium-ion batteries. Nanoscale 2018, 10, 13539-13547.
[48]
Wagemaker, M.; Borghols, W. J. H.; Mulder, F. M. Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J. Am. Chem. Soc. 2007, 129, 4323-4327.
[49]
Borghols, W. J. H.; Lützenkirchen-Hecht, D.; Haake, U.; Van Eck, E. R. H.; Mulder, F. M.; Wagemaker, M. The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase. Phys. Chem. Chem. Phys. 2009, 11, 5742-5748.
[50]
Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. D. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 2012, 4, 2526-2542.
[51]
Wang, S. B.; Guan, B. Y.; Yu, L.; Lou, X. W. Rational design of three-layered TiO2@Carbon@MoS2 hierarchical nanotubes for enhanced lithium storage. Adv. Mater. 2017, 29, 1702724.
[52]
Fang, Y. Z.; Hu, R.; Liu, B. Y.; Zhang, Y. Y.; Zhu, K.; Yan, J.; Ye, K.; Cheng, K.; Wang, G. L.; Cao, D. X. MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 2019, 7, 5363-5372.
[53]
Deng, C. J.; Lau, M. L.; Ma, C. R.; Skinner, P.; Liu, Y. Z.; Xu, W. Q.; Zhou, H.; Zhang, X. H.; Wu, D.; Yin, Y. D. et al. A mechanistic study of mesoporous TiO2 nanoparticle negative electrode materials with varying crystallinity for lithium ion batteries. J. Mater. Chem. A 2020, 8, 3333-3343.
[54]
Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279-283.
File
12274_2020_3225_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 September 2020
Revised: 28 October 2020
Accepted: 05 November 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors acknowledge the financial support from the National Key R&D Program of China (No. 2018YFA0208401), Basic Science Center Project of NSFC under grant No. 51788104, Scientific Research Foundation of Qufu Normal University (No. 613701), and Fund of Key Laboratory of Advanced Materials of Ministry of Education (No. 2020AML04). We thank Dr. Bolun Wang for his kind help in revising the manuscript.

Return