Journal Home > Volume 14 , Issue 7

Self-passivation in aqueous solution and sluggish surface reaction kinetics significantly limit the photoelectrochemical (PEC) performances of silicon-based photoelectrodes. Herein, a WO3 thin layer is deposited on the p-Si substrate by pulsed laser deposition (PLD), acting as a photocathode for PEC hydrogen generation. Compared to bare p-Si, the single-junctional p-Si/WO3 photoelectrodes exhibit excellent and stable PEC performances with significantly increased cathodic photocurrent density and exceptional anodic shift in onset potential for water reduction. It is revealed that the WO3 layer could reduce the charge transfer resistance across the electrode/electrolyte interface by eliminating the effect of Fermi level pinning on the surface of p-Si. More importantly, by varying the oxygen pressures during PLD, the collaborative modulation of W-O bond covalency and WO6 octahedral structure symmetry contributes to the promoted charge carrier transport and separation. Meanwhile, a large band bending at the p-Si/WO3 junction, induced by the optimized O vacancy contents in WO3, could provide a photovoltage as high as ~ 500 mV to efficiently drive charge transfer to overcome the water reduction overpotential. Synergistically, by manipulating W-O local atomic structures in the deposited WO3 layer, a great improvement in PEC performance could be achieved over the single- junctional p-Si/WO3 photocathodes for solar hydrogen generation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Manipulating metal-oxygen local atomic structures in single-junctional p-Si/WO3 photocathodes for efficient solar hydrogen generation

Show Author's information Wu Zhou1Chung-Li Dong2Yiqing Wang1Yu-Cheng Huang2Lingyun He1Han-Wei Chang2Shaohua Shen1( )
International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Shaanxi 710049, China
Department of Physics, Tamkang University, Tamsui 25137, Taiwan, China

Abstract

Self-passivation in aqueous solution and sluggish surface reaction kinetics significantly limit the photoelectrochemical (PEC) performances of silicon-based photoelectrodes. Herein, a WO3 thin layer is deposited on the p-Si substrate by pulsed laser deposition (PLD), acting as a photocathode for PEC hydrogen generation. Compared to bare p-Si, the single-junctional p-Si/WO3 photoelectrodes exhibit excellent and stable PEC performances with significantly increased cathodic photocurrent density and exceptional anodic shift in onset potential for water reduction. It is revealed that the WO3 layer could reduce the charge transfer resistance across the electrode/electrolyte interface by eliminating the effect of Fermi level pinning on the surface of p-Si. More importantly, by varying the oxygen pressures during PLD, the collaborative modulation of W-O bond covalency and WO6 octahedral structure symmetry contributes to the promoted charge carrier transport and separation. Meanwhile, a large band bending at the p-Si/WO3 junction, induced by the optimized O vacancy contents in WO3, could provide a photovoltage as high as ~ 500 mV to efficiently drive charge transfer to overcome the water reduction overpotential. Synergistically, by manipulating W-O local atomic structures in the deposited WO3 layer, a great improvement in PEC performance could be achieved over the single- junctional p-Si/WO3 photocathodes for solar hydrogen generation.

Keywords: silicon, water splitting, hydrogen generation, local atomic structure, photocathodes

References(61)

[1]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
[2]
Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16-22.
[3]
Yu, Y. X.; Pan, L. F.; Son, M. K.; Mayer, M. T.; Zhang, W. D.; Hagfeldt, A.; Luo, J. S.; Grätzel, M. Solution-processed Cu2S photocathodes for photoelectrochemical water splitting. ACS Energy Lett. 2018, 3, 760-766.
[4]
Landman, A.; Dotan, H.; Shter, G. E.; Wullenkord, M.; Houaijia, A.; Maljusch, A.; Grader, G. S.; Rothschild, A. Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat. Mater. 2017, 16, 646-651.
[5]
Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70-81.
[6]
Mao, L. L.; Huang, Y. C.; Fu, Y. M.; Dong, C. L.; Shen, S. H. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting. Sci. Bull. 2019, 64, 1262-1271.
[7]
Ager, J. W.; Shaner, M. R.; Walczak, K. A.; Sharp, I. D.; Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 2015, 8, 2811-2824.
[8]
Rothschild, A.; Dotan, H. Beating the efficiency of photovoltaics-powered electrolysis with tandem cell photoelectrolysis. ACS Energy Lett. 2017, 2, 45-51.
[9]
Yu, Y. H.; Zhang, Z.; Yin, X.; Kvit, A.; Liao, Q. L.; Kang, Z.; Yan, X. Q.; Zhang, Y.; Wang, X. D. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nat. Energy 2017, 2, 17045.
[10]
Cheng, W. H.; Richter, M. H.; May, M. M.; Ohlmann, J.; Lackner, D.; Dimroth, F.; Hannappel, T.; Atwater, H. A.; Lewerenz, H. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett. 2018, 3, 1795-1800.
[11]
Wang, S. C.; He, T. W.; Yun, J. H.; Hu, Y. X.; Xiao, M.; Du, A. J.; Wang, L. Z. New iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting. Adv. Funct. Mater. 2018, 28, 1802685.
[12]
Li, D.; Shi, J. Y.; Li, C. Transition-metal-based electrocatalysts as cocatalysts for photoelectrochemical water splitting: A mini review. Small 2018, 14, 1704179.
[13]
Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005-1009.
[14]
Wei, D. X.; Tan, Y. B.; Wang, Y. Q.; Kong, T. T.; Shen, S. H.; Mao, S. S. Function-switchable metal/semiconductor junction enables efficient photocatalytic overall water splitting with selective water oxidation products. Sci. Bull. 2020, 65, 1389-1395.
[15]
Hill, J. C.; Landers, A. T.; Switzer, J. A. An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation. Nat. Mater. 2015, 14, 1150-1155.
[16]
Yang, W.; Ahn, J.; Oh, Y.; Tan, J.; Lee, H.; Park, J.; Kwon, H. C.; Kim, J.; Jo, W.; Kim, J. et al. Adjusting the anisotropy of 1D Sb2Se3 nanostructures for highly efficient photoelectrochemical water splitting. Adv. Energy Mater. 2018, 8, 1702888.
[17]
Diao, Z. D.; Zhao, D. M.; Lv, C. X.; Liu, H. L.; Yang, D. J.; Shen, S. H. Ultrafine polycrystalline titania nanofibers for superior sodium storage. J. Energy Chem. 2019, 38, 153-161.
[18]
Scheuermann, A. G.; Lawrence, J. P.; Kemp, K. W.; Ito, T.; Walsh, A.; Chidsey, C. E. D.; Hurley, P. K.; McIntyre, P. C. Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes. Nat. Mater. 2016, 15, 99-105.
[19]
Gu, J.; Yan, Y.; Young, J. L.; Steirer, K. X.; Neale, N. R.; Turner, J. A. Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst. Nat. Mater. 2016, 15, 456-460.
[20]
Kang, D.; Young, J. L.; Lim, H.; Klein, W. E.; Chen, H. D.; Xi, Y. Z.; Gai, B. J.; Deutsch, T. G.; Yoon, J. Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat. Energy 2017, 2, 17043.
[21]
Li, Y. R.; Guo, Y.; Long, R.; Liu, D.; Zhao, D. M.; Tan, Y. B.; Gao, C.; Shen, S. H.; Xiong, Y. J. Steering plasmonic hot electrons to realize enhanced full-spectrum photocatalytic hydrogen evolution. Chin. J. Catal. 2018, 39, 453-462.
[22]
Sambur, J. B.; Chen, T. Y.; Choudhary, E.; Chen, G. Q.; Nissen, E. J.; Thomas, E. M.; Zou, N. M.; Chen, P. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 2016, 530, 77-80.
[23]
Zhao, Y. H.; Brocks, G.; Genuit, H.; Lavrijsen, R.; Verheijen, M. A.; Bieberle-Hutter, A. Boosting the performance of WO3/n-Si heterostructures for photoelectrochemical water splitting: From the role of Si to interface engineering. Adv. Energy Mater. 2019, 9, 1900940.
[24]
Zhang, S. Y.; She, G. W.; Li, S. Y.; Mu, L. X.; Shi, W. S. Si-H induced synthesis of Si/Cu2O nanowire arrays for photoelectrochemical water splitting. Nanotechnology 2018, 29, 035601.
[25]
Thalluri, S. M.; Borme, J.; Yu, K.; Xu, J. Y.; Amorim, I.; Gaspar, J.; Qiao, L.; Ferreira, P.; Alpuim, P.; Liu, L. F. Conformal and continuous deposition of bifunctional cobalt phosphide layers on p-silicon nanowire arrays for improved solar hydrogen evolution. Nano Res. 2018, 11, 4823-4835.
[26]
Narkeviciute, I.; Chakthranont, P.; Mackus, A. J. M.; Hahn, C.; Pinaud, B. A.; Bent, S. F.; Jaramillo, T. F. Tandem core-shell Si-Ta3N5 photoanodes for photoelectrochemical water splitting. Nano Lett. 2016, 16, 7565-7572.
[27]
Zhao, S.; Yuan, G. D.; Wang, Q.; Liu, W. Q.; Wang, R.; Yang, S. H. Quasi-hydrophilic black silicon photocathodes with inverted pyramid arrays for enhanced hydrogen generation. Nanoscale 2020, 12, 316-325.
[28]
Tao, W.; Wang, P.; You, Y.; Park, K.; Wang, C. Y.; Li, Y. K.; Cao, F. F.; Xin, S. Strategies for improving the storage performance of silicon- based anodes in lithium-ion batteries. Nano Res. 2019, 12, 1739-1749.
[29]
Ku, C. K.; Wu, P. H.; Chung, C. C.; Chen, C. C.; Tsai, K. J.; Chen, H. M.; Chang, Y. C.; Chuang, C. H.; Wei, C. Y.; Wen, C. Y. et al. Creation of 3D textured graphene/Si Schottky junction photocathode for enhanced photo-electrochemical efficiency and stability. Adv. Energy Mater. 2019, 9, 1901022.
[30]
Zhou, X. H.; Liu, R.; Sun, K.; Friedrich, D.; McDowell, M. T.; Yang, F.; Omelchenko, S. T.; Saadi, F. H.; Nielander, A. C.; Yalamanchili, S. et al. Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy Environ. Sci. 2015, 8, 2644-2649.
[31]
Zhao, J. H.; Cai, L. L.; Li, H.; Shi, X. J.; Zheng, X. L. Stabilizing silicon photocathodes by solution-deposited Ni-Fe layered double hydroxide for efficient hydrogen evolution in alkaline media. ACS Energy Lett. 2017, 2, 1939-1946.
[32]
Kast, M. G.; Enman, L. J.; Gurnon, N. J.; Nadarajah, A.; Boettcher, S. W. Solution-deposited F: SnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathodes. ACS Appl. Mater. Interfaces 2014, 6, 22830-22837.
[33]
Chen, C. L.; Wei, Y. L.; Yuan, G. Z.; Liu, Q. L.; Lu, R. R.; Huang, X.; Cao, Y.; Zhu, P. H. Synergistic effect of Si doping and heat treatments enhances the photoelectrochemical water oxidation performance of TiO2 nanorod arrays. Adv. Funct. Mater. 2017, 27, 1701575.
[34]
Ji, L.; Hsu, H. Y.; Li, X. H.; Huang, K.; Zhang, Y.; Lee, J. C.; Bard, A. J.; Yu, E. T. Localized dielectric breakdown and antireflection coating in metal-oxide-semiconductor photoelectrodes. Nat. Mater. 2017, 16, 127-131.
[35]
Gu, J.; Aguiar, J. A.; Ferrere, S.; Steirer, K. X.; Yan, Y.; Xiao, C. X.; Young, J. L.; Al-Jassim, M.; Neale, N. R.; Turner, J. A. A graded catalytic- protective layer for an efficient and stable water-splitting photocathode. Nat. Energy 2017, 2, 16192.
[36]
Yin, Z. H.; Fan, R. L.; Huang, G. P.; Shen, M. R. 11.5% efficiency of TiO2 protected and Pt catalyzed n+np+-Si photocathodes for photoelectrochemical water splitting: Manipulating the Pt distribution and Pt/Si contact. Chem. Commun. 2018, 54, 543-546.
[37]
Zhang, H. X.; Ding, Q.; He, D. H.; Liu, H.; Liu, W.; Li, Z. J.; Yang, B.; Zhang, X. W.; Lei, L. C.; Jin, S. A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production. Energy Environ. Sci. 2016, 9, 3113-3119.
[38]
Wu, F. L.; Liao, Q. L.; Cao, F. R.; Li, L.; Zhang, Y. Non-noble bimetallic NiMoO4 nanosheets integrated Si photoanodes for highly efficient and stable solar water splitting. Nano Energy 2017, 34, 8-14.
[39]
Wang, Y. H.; He, Z. Q.; Zhang, J. B.; Liu, H.; Lai, X. B.; Liu, B. Y.; Chen, Y. B.; Wang, F. P.; Zhang, L. W. UV illumination enhanced desorption of oxygen molecules from monolayer MoS2 surface. Nano Res. 2020, 13, 358-365.
[40]
Ji, L.; McDaniel, M. D.; Wang, S. J.; Posadas, A. B.; Li, X. H.; Huang, H. Y.; Lee, J. C.; Demkov, A. A.; Bard, A. J.; Ekerdt, J. G. et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat. Nanotech. 2015, 10, 84-90.
[41]
Oh, S.; Kim, J. B.; Song, J. T.; Oh, J.; Kim, S. H. Atomic layer deposited molybdenum disulfide on Si photocathodes for highly efficient photoelectrochemical water reduction reaction. J. Mater. Chem. A 2017, 5, 3304-3310.
[42]
Kargar, A.; Kim, S. J.; Allameh, P.; Choi, C.; Park, N.; Jeong, H.; Pak, Y.; Jung, G. Y.; Pan, X. Q.; Wang, D. L. et al. p-Si/SnO2/Fe2O3 core/ shell/shell nanowire photocathodes for neutral pH water splitting. Adv. Funct. Mater. 2015, 25, 2609-2615.
[43]
Stevens, M. B.; Enman, L. J.; Korkus, E. H.; Zaffran, J.; Trang, C. D. M.; Asbury, J.; Kast, M. G.; Toroker M. C.; Boettcher S. W. Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure. Nano Res. 2019, 12, 2288-2295.
[44]
Zheng, J. Y.; Lyu, Y. H.; Wang, R. L.; Xie, C.; Zhou, H. J.; Jiang, S. P.; Wang, S. Y. Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode. Nat. Commun. 2018, 9, 3572.
[45]
Lee, S.; Cha, S.; Myung, Y.; Park, K.; Kwak, I. H.; Kwon, I. S.; Seo, J.; Lim, S. A.; Cha, E. H.; Park, J. Orthorhombic NiSe2 nanocrystals on Si nanowires for efficient photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2018, 10, 33198-33204.
[46]
He, L. Y.; Zhou, W.; Cai, D. P.; Mao, S. S.; Sun, K.; Shen, S. H. Pulsed laser-deposited n-Si/NiOx photoanodes for stable and efficient photoelectrochemical water splitting. Catal. Sci. Technol. 2017, 7, 2632-2638.
[47]
Regan, K. P.; Koenigsmann, C.; Sheehan, S. W.; Konezny, S. J.; Schmuttenmaer, C. A. Size-dependent ultrafast charge carrier dynamics of WO3 for photoelectrochemical cells. J. Phys. Chem. C 2016, 120, 14926-14933.
[48]
Qiu, H.; Lu, Y. F. Studies of pulsed laser deposition mechanism of WO3 thin films. Jpn. J. Appl. Phys. 2001, 40, 183-187.
[49]
Çopuroğlu, M.; Sezen, H.; Opila, R. L.; Suzer, S. Band-bending at buried SiO2/Si interface as probed by XPS. ACS Appl. Mater. Interfaces 2013, 5, 5875-5881.
[50]
Koza, J. A.; He, Z.; Miller, A. S.; Switzer, J. A. Electrodeposition of crystalline Co3O4—A catalyst for the oxygen evolution reaction. Chem. Mater. 2012, 24, 3567-3573.
[51]
Basu, M.; Zhang, Z. W.; Chen, C. J.; Chen, P. T.; Yang, K. C.; Ma, C. G.; Lin, C. C.; Hu, S. F.; Liu, R. S. Heterostructure of Si and CoSe2: A promising photocathode based on a non-noble metal catalyst for photoelectrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 6211-6216.
[52]
Yu, X. W.; Yang, P.; Chen, S.; Zhang, M.; Shi, G. Q. NiFe alloy protected silicon photoanode for efficient water splitting. Adv. Energy Mater. 2017, 7, 1601805.
[53]
Orikasa, Y.; Ina, T.; Nakao, T.; Mineshige, A.; Amezawa, K.; Oishi, M.; Arai, H.; Ogumi, Z.; Uchimoto, Y. X-ray absorption spectroscopic study on La0.6Sr0.4CoO3-δ cathode materials related with oxygen vacancy formation. J. Phys. Chem. C 2011, 115, 16433-16438.
[54]
Poirier, G.; Messaddeq, Y.; Ribeiro, S. J. L.; Poulain, M. Structural study of tungstate fluorophosphate glasses by Raman and X-ray absorption spectroscopy. J. Solid State Chem. 2005, 178, 1533-1538.
[55]
Purans, J.; Kuzmin, A.; Parent, P.; Laffon, C. X-ray absorption study of the electronic structure of tungsten and molybdenum oxides on the O K-edge. Electrochim. Acta 2001, 46, 1973-1976.
[56]
Li, Y. S.; Tang, Z. L.; Zhang, J. Y.; Zhang, Z. T. Defect engineering of air-treated WO3 and its enhanced visible-light-driven photocatalytic and electrochemical performance. J. Phys. Chem. C 2016, 120, 9750-9763.
[57]
Huang, H. W.; Tu, S. C.; Zeng, C.; Zhang, T. R.; Reshak, A. H.; Zhang, Y. H. Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem., Int. Ed. 2017, 56, 11860-11864.
[58]
Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec M.; Qiao, S. Z. Earth- abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787-7812.
[59]
Wang, T.; Luo, Z. B.; Li C. C.; Gong, J. L. Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. Chem. Soc. Rev. 2014, 43, 7469-7484.
[60]
Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240-247.
[61]
Bi, C.; Wang, Q.; Shao, Y. C.; Yuan, Y. B.; Xiao, Z. G.; Huang, J. S. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747.
File
12274_2020_3223_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 August 2020
Revised: 15 October 2020
Accepted: 02 November 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Development Program of China (Nos. 2018YFB1502003 and 2017YFE0193900), the National Natural Science Foundation of China (Nos. 51961165103 and 21875183), the National Program for Support of Top-notch Young Professionals, and "The Youth Innovation Team of Shaanxi Universities". C. L. D. would like to acknowledge the financial support under contracts MoST 107-2112-M-032-004-MY3 and 108-2218-E-032-003-MY3.

Return