Journal Home > Volume 14 , Issue 7

Electrically responsive electrochemical actuators that contain a polymer electrolyte membrane laminated between two electrodes have attracted great attention due to their potential applications in smart electronics, wearable devices, and soft robotics. However, some challenges such as the achievement of large bending strain under low applied voltage and fast ion diffusion and accumulation still exist to be resolved. The key to the solution lies in the choice of electrode materials and the design of electrode structures. In this study, an engineering electrochemical actuator that presents large bending strain under low applied voltage based on MXene/polystyrene-MXene hybrid electrodes is developed. The developed electrochemical actuator based on the MXene/polystyrene-MXene 3D-structure is found to exhibit large bending strain (ca. 1.18%), broad frequency bandwidth, good durability (90% retention after 10,000 cycles) and considerable Young’s modulus (ca. 246 MPa). The high-performance actuation mainly stems from the excellent properties of MXene and 3D-structure of the electrode. The MXene provides excellent mechanical strength and high electrical conductivity which facilitate strong interaction and rapid electron transfer in electrodes. The 3D architectures formed by polystyrene microspheres generate unimpeded ion pathways for ionic short diffusion and fast injection. This study reveals that the 3D-structure hybrid electrodes play a crucial role in promoting the performance of such electrochemical actuators.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineering electrochemical actuators with large bending strain based on 3D-structure titanium carbide MXene composites

Show Author's information Tong Wang1,2Tianjiao Wang1,2Chuanxin Weng1Luqi Liu1Jun Zhao1,2( )Zhong Zhang1,2( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Science, Beijing 100049, China

Abstract

Electrically responsive electrochemical actuators that contain a polymer electrolyte membrane laminated between two electrodes have attracted great attention due to their potential applications in smart electronics, wearable devices, and soft robotics. However, some challenges such as the achievement of large bending strain under low applied voltage and fast ion diffusion and accumulation still exist to be resolved. The key to the solution lies in the choice of electrode materials and the design of electrode structures. In this study, an engineering electrochemical actuator that presents large bending strain under low applied voltage based on MXene/polystyrene-MXene hybrid electrodes is developed. The developed electrochemical actuator based on the MXene/polystyrene-MXene 3D-structure is found to exhibit large bending strain (ca. 1.18%), broad frequency bandwidth, good durability (90% retention after 10,000 cycles) and considerable Young’s modulus (ca. 246 MPa). The high-performance actuation mainly stems from the excellent properties of MXene and 3D-structure of the electrode. The MXene provides excellent mechanical strength and high electrical conductivity which facilitate strong interaction and rapid electron transfer in electrodes. The 3D architectures formed by polystyrene microspheres generate unimpeded ion pathways for ionic short diffusion and fast injection. This study reveals that the 3D-structure hybrid electrodes play a crucial role in promoting the performance of such electrochemical actuators.

Keywords: composite materials, MXene, electrochemistry, actuators

References(48)

[1]
Zhou, J.; Mulle, M.; Zhang, Y. B.; Xu, X. Z.; Li, E. Q.; Han, F.; Thoroddsen, S. T.; Lubineau, G. High-ampacity conductive polymer microfibers as fast response wearable heaters and electromechanical actuators. J. Mater. Chem. C 2016, 4, 1238-1249.
[2]
Gural’skiy, I. A.; Quintero, C. M.; Costa, J. S.; Demont, P.; Molnár, G.; Salmon, L.; Shepherd, H. J.; Bousseksou, A. Spin crossover composite materials for electrothermomechanical actuators. J. Mater. Chem. C 2014, 2, 2949-2955.
[3]
Ze, Q. J.; Kuang, X.; Wu, S.; Wong, J.; Montgomery, S. M.; Zhang, R. D.; Kovitz, J. M.; Yang, F.; Qi, H. J.; Zhao, R. K. Magnetic shape memory polymers with integrated multifunctional shape manipulation. Adv. Mater. 2020, 32, 1906657.
[4]
Diller, E.; Zhuang, J.; Lum, G. Z.; Edwards, M. R.; Sitti, M. Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming. Appl. Phys. Lett. 2014, 104, 174101.
[5]
Priimagi, A.; Barrett, C. J.; Shishido, A. Recent twists in photoactuation and photoalignment control. J. Mater. Chem. C 2014, 2, 7155-7162.
[6]
Yu, L.; Cheng, Z. X.; Dong, Z. J.; Zhang, Y. H.; Yu, H. F. Photomechanical response of polymer-dispersed liquid crystals/ graphene oxide nanocomposites. J. Mater. Chem. C 2014, 2, 8501-8506.
[7]
Hua, D. C.; Zhang, X. Q.; Ji, Z. Y.; Yan, C. Y.; Yu, B.; Li, Y. D.; Wang, X. L.; Zhou, F. 3D printing of shape changing composites for constructing flexible paper-based photothermal bilayer actuators. J. Mater. Chem. C 2018, 6, 2123-2131.
[8]
Li, W. W.; Zhao, L. Y.; Dai, Z. H.; Jin, H.; Duan, F.; Liu, J. C.; Zeng, Z. H..; Zhao, J.; Zhang, Z. A temperature-activated nanocomposite metamaterial absorber with a wide tunability. Nano Res. 2018, 11, 3931-3942.
[9]
Oh, J.; Kozlov, M. E.; Carretero-González, J.; Castillo-Martínez, E.; Baughman, R. H. Thermal actuation of graphene oxide nanoribbon mats. Chem. Phys. Lett. 2011, 505, 31-36.
[10]
Maeda, S.; Hara, Y.; Sakai, T.; Yoshida, R.; Hashimoto, S. Self-walking gel. Adv. Mater. 2007, 19, 3480-3484.
[11]
Behl, M.; Lendlein, A. Shape-memory polymers. Mater. Today 2007, 10, 20-28.
[12]
Park, K.; Yoon, M. K.; Lee, S.; Choi, J.; Thubrikar, M. Effects of electrode degradation and solvent evaporation on the performance of ionic-polymer-metal composite sensors. Smart Mater. Struct. 2010, 19, 075002.
[13]
Kong, L. R.; Chen, W. Carbon nanotube and graphene-based bioinspired electrochemical actuators. Adv. Mater. 2014, 26, 1025-1043.
[14]
Li, J. Z.; Ma, W. J.; Song, L.; Niu, Z. Q.; Cai, L.; Zeng, Q. S.; Zhang, X. X.; Dong, H. B.; Zhao, D.; Zhou, W. et al. Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett. 2011, 11, 4636-4641.
[15]
Cottinet, P. J.; Souders, C.; Tsai, S. Y.; Liang, R.; Wang, B.; Zhang, C. Electromechanical actuation of buckypaper actuator: Material properties and performance relationships. Phys. Lett. A 2012, 376, 1132-1136.
[16]
Lu, C.; Yang, Y.; Wang, J.; Fu, R. P.; Zhao, X. X.; Zhao, L.; Ming, Y.; Hu, Y.; Lin, H. Z.; Tao, X. M. et al. High-performance graphdiyne- based electrochemical actuators. Nat. Commun. 2018, 9, 752.
[17]
Lu, L. H.; Liu, J. H.; Hu, Y.; Zhang, Y. W.; Randriamahazaka, H.; Chen, W. Highly stable air working bimorph actuator based on a graphene nanosheet/carbon nanotube hybrid electrode. Adv. Mater. 2012, 24, 4317-4321.
[18]
Wu, G.; Wu, X. J.; Xu, Y. J.; Cheng, H. Y.; Meng, J. K.; Yu, Q.; Shi, X. Y.; Zhang, K.; Chen, W.; Chen, S. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv. Mater. 2019, 31, 1806492.
[19]
Wu, G.; Li, G. H.; Lan, T.; Hu, Y.; Li, Q. W.; Zhang, T.; Chen, W. An interface nanostructured array guided high performance electrochemical actuator. J. Mater. Chem. A 2014, 2, 16836-16841.
[20]
Lu, L. H.; Liu, J. H.; Hu, Y.; Zhang, Y. W.; Chen, W. Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design. Adv. Mater. 2013, 25, 1270-1274.
[21]
Terasawa, N.; Ono, N.; Hayakawa, Y.; Mukai, K.; Koga, T.; Higashi, N.; Asaka, K. Effect of hexafluoropropylene on the performance of poly(vinylidene fluoride) polymer actuators based on single-walled carbon nanotube-ionic liquid gel. Sens. Actuators B Chem. 2011, 160, 161-167.
[22]
Terasawa, N.; Ono, N.; Mukai, K.; Koga, T.; Higashi, N.; Asaka, K. A multi-walled carbon nanotube/polymer actuator that surpasses the performance of a single-walled carbon nanotube/polymer actuator. Carbon 2012, 50, 311-320.
[23]
Liu, Q.; Liu, L. Q.; Xie, K.; Meng, Y. N.; Wu, H. P.; Wang, G. R.; Dai, Z. H.; Wei, Z. X.; Zhang, Z. Synergistic effect of a r-GO/PANI nanocomposite electrode based air working ionic actuator with a large actuation stroke and long-term durability. J. Mater. Chem. A 2015, 3, 8380-8388.
[24]
Wu, G.; Hu, Y.; Zhao, J. J.; Lan, T.; Wang, D. X.; Liu, Y.; Chen, W. Ordered and active nanochannel electrode design for high-performance electrochemical actuator. Small 2016, 12, 4986-4992.
[25]
Wu, G.; Hu, Y.; Liu, Y.; Zhao, J. J.; Chen, X. L.; Whoehling, V.; Plesse, C.; Nguyen, G. T. M.; Vidal, F.; Chen, W. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator. Nat. Commu.n 2015, 6, 7258.
[26]
Kotal, M.; Kim, J.; Kim, K. J.; Oh, I. K. Sulfur and nitrogen co-doped graphene electrodes for high-performance ionic artificial muscles. Adv. Mater. 2016, 28, 1610-1615.
[27]
Roy, S.; Kim, J.; Kotal, M.; Tabassian, R.; Kim, K. J.; Oh, I. K. Collectively exhaustive electrodes based on covalent organic framework and antagonistic co-doping for electroactive ionic artificial muscles. Adv. Funct. Mater. 2019, 29, 1900161.
[28]
Roy, S.; Kim, J.; Kotal, M.; Kim, K. J.; Oh, I. K. Electroionic antagonistic muscles based on nitrogen-doped carbons derived from poly (triazine-triptycene). Adv. Sci. 2017, 4, 1700410.
[29]
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992-1005.
[30]
Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. Electronic properties and applications of MXenes: A theoretical review. J. Mater. Chem. C 2017, 5, 2488-2503.
[31]
Zang, X. N.; Chen, W. S.; Zou, X. L.; Hohman, J. N.; Yang, L. J.; Li, B. X.; Wei, M. S.; Zhu, C. H.; Liang, J. M.; Sanghadasa, M. et al. Self- assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv. Mater. 2018, 30, 1805188.
[32]
Ahmed, B.; Anjum, D. H.; Hedhili, M. N.; Gogotsi, Y.; Alshareef, H. N. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 2016, 8, 7580-7587.
[33]
Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang, K. L.; Wang, Z. K. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196-202.
[34]
Boota, M.; Gogotsi, Y. MXene-conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 2019, 9, 1802917.
[35]
Song, X. L.; Wang, H.; Jin, S. M.; Lv, M.; Zhang, Y.; Kong, X. D.; Xu, H. M.; Ma, T.; Luo, X. Y.; Tan, H. F. et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659-1667.
[36]
Lei, Y. J.; Zhao, W. L.; Zhang, Y. Z.; Jiang, Q.; He, J. H.; Baeumner, A. J.; Wolfbeis, O. S.; Wang, Z. L.; Salama, K. N.; Alshareef, H. N. A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small 2019, 15, 1901190.
[37]
Li, T. K.; Chen, L. L.; Yang, X.; Chen, X.; Zhang, Z. H.; Zhao, T. T.; Li, X. F.; Zhang, J. H. A flexible pressure sensor based on an MXene- textile network structure. J. Mater. Chem. C 2019, 7, 1022-1027.
[38]
Li, X. L.; Yin, X. W.; Han, M. K.; Song, C. Q.; Xu, H. L.; Hou, Z. X.; Zhang, L. T.; Cheng, L. F. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 2017, 5, 4068-4074.
[39]
Li, X. L.; Yin, X. W.; Han, M. K.; Song, C. Q.; Sun, X. N.; Xu, H. L.; Cheng, L. F.; Zhang, L. T. A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. J. Mater. Chem. C 2017, 5, 7621-7628.
[40]
Bian, R. J.; He, G. L.; Zhi, W. Q.; Xiang, S. L.; Wang, T. W.; Cai, D. Y. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 2019, 7, 474-478.
[41]
Yun, T.; Kim, H.; Iqbal, A.; Cho, Y. S.; Lee, G. S.; Kim, M. K.; Kim, S. J.; Kim, D.; Gogotsi, Y.; Kim, S. O. et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 2020, 32, 1906769.
[42]
Pang, D.; Alhabeb, M.; Mu, X. P.; Dall’Agnese, Y.; Gogotsi, Y.; Gao, Y. Electrochemical actuators based on two-dimensional Ti3C2Tx (MXene). Nano Lett. 2019, 19, 7443-7448.
[43]
Umrao, S.; Tabassian, R.; Kim, J.; Nguyen, V. H.; Zhou, Q. T.; Nam, S.; Oh, I. K. MXene artificial muscles based on ionically cross- linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 2019, 4, eaaw7797.
[44]
Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676-16681.
[45]
Zhu, M. S.; Huang, Y.; Deng, Q. H.; Zhou, J.; Pei, Z. X.; Xue, Q.; Huang, Y.; Wang, Z. F.; Li, H. F.; Huang, Q. et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 2016, 6, 1600969.
[46]
Sun, R. H.; Zhang, H. B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Z. Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 2017, 27, 1702807.
[47]
Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633-7644.
[48]
Lukatskaya, M. R.; Bak, S. M.; Yu, X. Q.; Yang, X. Q.; Barsoum, M. W.; Gogotsi, Y. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 2015, 5, 1500589.
Video
12274_2020_3222_MOESM2_ESM.mp4
File
12274_2020_3222_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 August 2020
Revised: 09 October 2020
Accepted: 03 November 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Key Basic Research Program of China (Grant No. 2018YFA0208403), the National Natural Science Foundation of China (Grant Nos. 51861165103, 11832010, 11890682, and 21721002), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB36000000 and XDB30020100).

Return