Journal Home > Volume 14 , Issue 4

Pillaring technologies have been considered as an effective way to improve lithium storage performance of Ti3C2Tx MXene. Nevertheless, the pillared hybrids suffer from sluggish Li+ diffusion kinetics and electronic transportation due to the compact multi-layered MXene structure, thus exhibiting inferior rate performance. Herein, the few-layered Ti3C2 MXene (f-Ti3C2 MXene) which is free from restacking can be prepared quickly based on the NH4+ ions method. Besides, Fe nanocomplex pillared few-layered Ti3C2Tx (FPTC) heterostructures are fabricated via the intercalation of Fe ions into the interlayer of f-Ti3C2 MXene. The f-Ti3C2 MXene which is immune to restacking can provide a highly conductive substrate for the rapid transport of Li+ ions and electrons and possess adequate electrolyte accessible area. Moreover, f-Ti3C2 MXene can efficiently relieve the aggregation, prevent the pulverization and buffer the large volume change of Fe nanocomplex during lithiation/delithiation process, leading to enhanced charge transfer kinetics and excellent structural stability of FPTC composites. Consequently, the FPTC hybrids exhibit a high capacity of 535 mAh·g−1 after 150 cycles at 0.5 A·g−1 and an enhanced rate performance with 310 mAh·g−1 after 850 cycles at 5 A·g−1. This strategy is facile, universal and can be extended to fabricate various few-layered MXene-derived hybrids with superior rate capability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries

Show Author's information Pengfei HuangShunlong ZhangHangjun YingWentao YangJianli WangRongnan GuoWeiqiang Han( )
School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

Pillaring technologies have been considered as an effective way to improve lithium storage performance of Ti3C2Tx MXene. Nevertheless, the pillared hybrids suffer from sluggish Li+ diffusion kinetics and electronic transportation due to the compact multi-layered MXene structure, thus exhibiting inferior rate performance. Herein, the few-layered Ti3C2 MXene (f-Ti3C2 MXene) which is free from restacking can be prepared quickly based on the NH4+ ions method. Besides, Fe nanocomplex pillared few-layered Ti3C2Tx (FPTC) heterostructures are fabricated via the intercalation of Fe ions into the interlayer of f-Ti3C2 MXene. The f-Ti3C2 MXene which is immune to restacking can provide a highly conductive substrate for the rapid transport of Li+ ions and electrons and possess adequate electrolyte accessible area. Moreover, f-Ti3C2 MXene can efficiently relieve the aggregation, prevent the pulverization and buffer the large volume change of Fe nanocomplex during lithiation/delithiation process, leading to enhanced charge transfer kinetics and excellent structural stability of FPTC composites. Consequently, the FPTC hybrids exhibit a high capacity of 535 mAh·g−1 after 150 cycles at 0.5 A·g−1 and an enhanced rate performance with 310 mAh·g−1 after 850 cycles at 5 A·g−1. This strategy is facile, universal and can be extended to fabricate various few-layered MXene-derived hybrids with superior rate capability.

Keywords: lithium-ion batteries, Fe ions intercalation, few-layered MXene, pillared MXene

References(76)

[1]
X. L. Li,; L. J. Zhi, Graphene hybridization for energy storage applications. Chem. Soc. Rev. 2018, 47, 3189-3216.
[2]
F. Z. Tu,; Y. Han,; Y. C. Du,; X. F. Ge,; W. S. Weng,; X. S. Zhou,; J. C. Bao, Hierarchical nanospheres constructed by ultrathin MoS2 nanosheets braced on nitrogen-doped carbon polyhedra for efficient lithium and sodium storage. ACS Appl. Mater. Interfaces 2019, 11, 2112-2119.
[3]
C. L. Tan,; X. H. Cao,; X. J. Wu,; Q. Y. He,; J. Yang,; X. Zhang,; J. Z. Chen,; W. Zhao,; S. K. Han,; G. H. Nam, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-6331.
[4]
M. Naguib,; M. Kurtoglu,; V. Presser,; J. Lu,; J. J. Niu,; M. Heon,; L. Hultman,; Y. Gogotsi,; M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248-4253.
[5]
X. L. Song,; H. Wang,; S. M. Jin,; M. Lv,; Y. Zhang,; X. D. Kong,; H. M. Xu,; T. Ma,; X. Y. Luo,; H. F. Tan, et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659-1667.
[6]
J. X. Nan,; X. Guo,; J. Xiao,; X. Li,; W. H. Chen,; W. J. Wu,; H. Liu,; Y. Wang,; M. H. Wu,; G. X. Wang, Nanoengineering of 2D MXene- based materials for energy storage applications. Small 2019, 1902085.
[7]
X. Guo,; X. Q. Xie,; S. Choi,; Y. F. Zhao,; H. Liu,; C. Y. Wang,; S. Chang,; G. X. Wang, Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 12445-12452.
[8]
X. Guo,; W. X. Zhang,; J. Q. Zhang,; D. Zhou,; X. Tang,; X. F. Xu,; B. H. Li,; H. Liu,; G. X. Wang, Boosting sodium storage in two- dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 2020, 14, 3651-3659.
[9]
Y. F. Dong,; Z. S. Wu,; S. H. Zheng,; X. H. Wang,; J. Q. Qin,; S. Wang,; X. Y. Shi,; X. H. Bao, Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 2017, 11, 4792-4800.
[10]
M. Narayanasamy,; B. Kirubasankar,; M. J. Shi,; S. Velayutham,; B. Wang,; S. Angaiah,; C. Yan, Morphology restrained growth of V2O5 by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries. Chem. Commun. 2020, 56, 6412-6415.
[11]
Z. Y. Li,; X. X. Wang,; W. M. Zhang,; S. P. Yang, Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high- performance rechargeable aluminum batteries. Chem. Eng. J. 2020, 398, 125679.
[12]
Q. Tang,; Z. Zhou,; P. W. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 2012, 134, 16909-16916.
[13]
X. B. Hui,; R. Z. Zhao,; P. Zhang,; C. X. Li,; C. X. Wang,; L. W. Yin, Low-temperature reduction strategy synthesized Si/Ti3C2 MXene composite anodes for high-performance Li-ion batteries. Adv. Energy Mater. 2019, 9, 1901065.
[14]
H. J. Ying,; S. L. Zhang,; Z. Meng,; Z. X. Sun,; W. Q. Han, Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. J. Mater. Chem. A 2017, 5, 8334-8342.
[15]
Q. B. Zhang,; H. X. Chen,; L. L. Luo,; B. T. Zhao,; H. Luo,; X. Han,; J. W. Wang,; C. M. Wang,; Y. Yang,; T. Zhu, et al. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ. Sci. 2018, 11, 669-681.
[16]
D. D. Sun,; M. S. Wang,; Z. Y. Li,; G. X. Fan,; L. Z. Fan,; A. G. Zhou, Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 2014, 47, 80-83.
[17]
Y. Xie,; M. Naguib,; V. N. Mochalin,; M. W. Barsoum,; Y. Gogotsi,; X. Q. Yu,; K. W. Nam,; X. Q. Yang,; A. I. Kolesnikov,; P. R. C. Kent, Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 2014, 136, 6385-6394.
[18]
Y. S. Wang,; Y. Y. Li,; Z. P. Qiu,; X. Z. Wu,; P. F. Zhou,; T. Zhou,; J. P. Zhao,; Z. C. Miao,; J. Zhou,; S. P. Zhuo, Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 11189-11197.
[19]
J. J. Ai,; Y. K. Lei,; S. Yang,; C. Y. Lai,; Q. J. Xu, SnS nanoparticles anchored on Ti3C2 nanosheets matrix via electrostatic attraction method as novel anode for lithium ion batteries. Chem. Eng. J. 2019, 357, 150-158.
[20]
A. Ali,; K. Hantanasirisakul,; A. Abdala,; P. Urbankowski,; M. Q. Zhao,; B. Anasori,; Y. Gogotsi,; B. Aïssa,; K. A. Mahmoud, Effect of synthesis on performance of MXene/Iron oxide anode material for lithium-ion batteries. Langmuir 2018, 34, 11325-11334.
[21]
B. M. Jun,; S. Kim,; J. Heo,; C. M. Park,; N. Her,; M. Jang,; Y. Huang,; J. Han,; Y. Yoon, Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471-487.
[22]
X. Q. Xie,; M. Q. Zhao,; B. Anasori,; K. Maleski,; C. E. Ren,; J. W. Li,; B. W. Byles,; E. Pomerantseva,; G. X. Wang,; Y. Gogotsi, Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 2016, 26, 513-523.
[23]
X. Guo,; J. Q. Zhang,; J. J. Song,; W. J. Wu,; H. Liu,; G. X. Wang, MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Mater. 2018, 14, 306-313.
[24]
S. L. Zhang,; H. J. Ying,; R. N. Guo,; W. T. Yang,; W. Q. Han, Vapor deposition red phosphorus to prepare nitrogen-doped Ti3C2Tx MXenes composites for lithium-ion batteries. J. Phys. Chem. Lett. 2019, 10, 6446-6454.
[25]
C. D. Wang,; H. Xie,; S. M. Chen,; B. H. Ge,; D. B. Liu,; C. Q. Wu,; W. J. Xu,; W. S. Chu,; G. Babu,; P. M. Ajayan, et al. Atomic cobalt covalently engineered interlayers for superior lithium-ion storage. Adv. Mater. 2018, 30, 1802525.
[26]
C. D. Wang,; S. M. Chen,; H. Xie,; S. Q. Wei,; C. Q. Wu,; L. Song, Atomic Sn4+ decorated into vanadium carbide MXene interlayers for superior lithium storage. Adv. Energy Mater. 2019, 9, 1802977.
[27]
J. M. Luo,; W. K. Zhang,; H. D. Yuan,; C. B. Jin,; L. Y. Zhang,; H. Huang,; C. Liang,; Y. Xia,; J. Zhang,; Y. P. Gan, et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 2017, 11, 2459-2469.
[28]
L. S. Yang,; W. J. Chen,; Q. M. Yu,; B. L. Liu, Mass production of two-dimensional materials beyond graphene and their applications. Nano Res., in press, .
[29]
X. Q. Zeng,; M. Li,; D. A. El-Hady,; W. Alshitari,; A. S. Al-Bogami,; J. Lu,; K. Amine, Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 2019, 9, 1900161.
[30]
Z. Hu,; Q. N. Liu,; S. L. Chou,; S. X. Dou, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium- ion batteries. Adv. Mater. 2017, 29, 1700606.
[31]
S. J. Luo,; L. Y. Xie,; F. Han,; W. Wei,; Y. Huang,; H. Zhang,; M. S. Zhu,; O. G. Schmidt,; L. Wang, Nanoscale parallel circuitry based on interpenetrating conductive assembly for flexible and high-power zinc ion battery. Adv. Funct. Mater. 2019, 29, 1901336.
[32]
D. L. Chao,; C. R. Zhu,; P. H. Yang,; X. H. Xia,; J. L. Liu,; J. Wang,; X. F. Fan,; S. V. Savilov,; J. Y. Lin,; H. J. Fan, et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.
[33]
Y. T. Wu,; P. Nie,; J. Wang,; H. Dou,; X. G. Zhang, Few-layer MXenes delaminated via high-energy mechanical milling for enhanced sodium-ion batteries performance. ACS Appl. Mater. Interfaces. 2017, 9, 39610-39617.
[34]
L. Y. Zhang,; L. Chen,; H. Luo,; X. F. Zhou,; Z. P. Liu, Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery. Adv. Energy Mater. 2017, 7, 1700034.
[35]
S. L. Zhang,; W. Q. Han, Recent advances in MXenes and their composites in lithium/sodium batteries from the viewpoints of components and interlayer engineering. Phys. Chem. Chem. Phys. 2020, 22, 16482-16526.
[36]
M. Naguib,; O. Mashtalir,; J. Carle,; V. Presser,; J. Lu,; L. Hultman,; Y. Gogotsi; M. W. Barsoum Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322-1331.
[37]
J. M. Luo,; C. L. Wang,; H. Wang,; X. F. Hu,; E. Matios,; X. Lu,; W. K. Zhang,; X. Y. Tao,; W. Y. Li, Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater. 2019, 29, 1805946.
[38]
J. M. Luo,; X. Y. Tao,; J. Zhang,; Y. Xia,; H. Huang,; L. Y. Zhang,; Y. P. Gan,; C. Liang,; W. K. Zhang, Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016, 10, 2491-2499.
[39]
J. M. Luo,; J. H. Zheng,; J. W. Nai,; C. B. Jin,; H. D. Yuan,; O. W. Sheng,; Y. J. Liu,; R. Y. Fang,; W. K. Zhang,; H. Huang, et al. Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 2019, 29, 1808107.
[40]
M. Xu,; S. L. Lei,; J. Qi,; Q. Y. Dou,; L. Y. Liu,; Y. L. Lu,; Q. Huang,; S. Q. Shi,; X. B. Yan, Opening magnesium storage capability of two-dimensional mxene by intercalation of cationic surfactant. ACS Nano 2018, 12, 3733-3740.
[41]
Y. Y. Li,; Y. Huang,; C. Z. Ou,; J. L. Zhu,; X. X. Yuan,; L. Yan,; W. W. Li,; H. Y. Zhang, Enhanced capability and cyclability of flexible TiO2-reduced graphene oxide hybrid paper electrode by incorporating monodisperse anatase TiO2 quantum dots. Electrochim. Acta. 2018, 259, 474-484.
[42]
B. Anasori,; M. R. Lukatskaya,; Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.
[43]
C. J. Zhang,; S. Pinilla,; N. McEvoy,; C. P. Cullen,; B. Anasori,; E. Long,; S. H. Park,; A. Seral-Ascaso,; A. Shmeliov,; D. Krishnan, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 2017, 29, 4848-4856.
[44]
J. L. Yang,; Q. L. Wu,; X. F. Yang,; S. M. He,; J. Khan,; Y. Y. Meng,; X. M. Zhu,; S. F. Tong,; M. M. Wu, Chestnut-like TiO2@α-Fe2O3 core-shell nanostructures with abundant interfaces for efficient and ultralong life lithium-ion storage. ACS Appl. Mater. Interfaces 2016, 9, 354-361.
[45]
Y. B. Chen,; J. H. Liang,; Q. H. Tian,; W. Zhang,; Z. Y. Sui, Facile construction of clustered Fe2O3/TiO2 composite for improved lithium storage performance. Synth. Met. 2020, 263, 116353.
[46]
P. C. Lian,; Y. F. Dong,; Z. S. Wu,; S. H. Zheng,; X. H. Wang,; S. Wang,; C. L. Sun,; J. Q. Qin,; X. Y. Shi,; X. H. Bao, Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 2017, 40, 1-8.
[47]
D. Y. Zhao,; R. Z. Zhao,; S. H. Dong,; X. G. Miao,; Z. W. Zhang,; C. X. Wang,; L. W. Yin, Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 2019, 12, 2422-2432.
[48]
D. Zhao,; M. Clites,; G. B. Ying,; S. Kota,; J. Wang,; V. Natu,; X. Wang,; E. Pomerantseva,; M. H. Cao,; M. W. Barsoum, Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage. Chem. Commun. 2018, 54, 4533-4536.
[49]
L. L. Peng,; Z. W. Fang,; Y. Zhu,; C. S. Yan,; G. H. Yu, Holey 2D nanomaterials for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1702179.
[50]
H. Liu,; X. Zhang,; Y. F. Zhu,; B. Cao,; Q. Z. Zhu,; P. Zhang,; B. Xu,; F. Wu,; R. J. Chen, Electrostatic self-assembly of 0D-2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 2019, 11, 65.
[51]
Q. Ni,; R. Q. Dong,; Y. Bai,; Z. H. Wang,; H. X. Ren,; S. Sean,; F. Wu,; H. J. Xu,; C. Wu, Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies. Energy Storage Mater. 2020, 25, 903-911.
[52]
Y. T. Liu,; P. Zhang,; N. Sun,; B. Anasori,; Q. Z. Zhu,; H. Liu,; Y. Gogotsi,; B. Xu, Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 2018, 30, 1707334.
[53]
W. C. Hung,; Y. C. Chen,; H. Chu,; T. K. Tseng, Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1, 2-dichloroethane. Appl. Surf. Sci. 2008, 255, 2205-2213.
[54]
X. B. Chen,; L. Liu,; P. Y. Yu,; S. S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746.
[55]
T. Yamashita,; P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441-2449.
[56]
T. Z. Tong,; J. L. Zhang,; B. Z. Tian,; F. Chen,; D. N. He, Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J. Hazard. Mater. 2008, 155, 572-579.
[57]
Z. Y. Zhang,; L. Weng,; Q. S. Rao,; S. D. Yang,; J. Q. Hu,; J. J. Cai,; Y. G. Min, Highly-dispersed iron oxide nanoparticles anchored on crumpled nitrogen-doped MXene nanosheets as anode for Li-ion batteries with enhanced cyclic and rate performance. J. Power Sources 2019, 439, 227107.
[58]
W. Zheng,; P. Zhang,; J. Chen,; W. B. Tian,; Y. M. Zhang,; Z. M. Sun, In situ synthesis of CNTs@Ti3C2 hybrid structures by microwave irradiation for high-performance anodes in lithium ion batteries. J. Mater. Chem. A 2018, 6, 3543-3551.
[59]
S. Hou,; P. Wang,; Y. P. Li,; F. Pang,; M. Liu,; Y. Z. Luo,; L. Zhuang,; L. Z. Zhao, Podocarpus-like α-Fe2O3/TiO2 composite with balsam pear texture for enhanced lithium storage. Appl. Surf. Sci. 2019, 476, 959-965.
[60]
L. H. Yin,; Y. J. Gao,; I. Jeon,; H. Yang,; J. P. Kim,; S. Y. Jeong,; C. R. Cho, Rice-panicle-like γ-Fe2O3@C nanofibers as high-rate anodes for superior lithium-ion batteries. Chem. Eng. J. 2019, 356, 60-68.
[61]
G. D. Zou,; Z. W. Zhang,; J. X. Guo,; B. Z. Liu,; Q. R. Zhang,; C. Fernandez,; Q. M. Peng, Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl. Mater. Interfaces 2016, 8, 22280-22286.
[62]
R. Y. Fang,; C. W. Lu,; A. Q. Chen,; K. Wang,; H. Huang,; Y. P. Gan,; C. Liang,; J. Zhang,; X. Y. Tao,; Y. Xia, et al. 2D MXene-based energy storage materials: Interfacial structure design and functionalization. ChemSusChem 2019, 13, 1409-1419.
[63]
Y. Q. Deng,; T. X. Shang,; Z. T. Wu,; Y. Tao,; C. Luo,; J. C. Liang,; D. L. Han,; R. Y. Lyu,; C. S. Qi,; W. Lv, et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 2019, 31, 1902432.
[64]
K. Zhu,; Y. Zhang,; H. L. Qiu,; Y. Meng,; Y. Gao,; X. Meng,; Z. M. Gao,; G. Chen,; Y. J. Wei, Hierarchical Fe3O4 microsphere/reduced graphene oxide composites as a capable anode for lithium-ion batteries with remarkable cycling performance. J. Alloys Compd. 2016, 675, 399-406.
[65]
Y. Li,; S. Wang,; D. N. Lei,; Y. B. He,; B. H. Li,; F. Y. Kang, Acetic acid-induced preparation of anatase TiO2 mesocrystals at low temperature for enhanced Li-ion storage. J. Mater. Chem. A 2017, 5, 12236-12242.
[66]
P. Zhang,; D. J. Wang,; Q. Z. Zhu,; N. Sun,; F. Fu,; B. Xu, Plate-to-layer Bi2MoO6/MXene-Heterostructured anode for lithium-ion batteries. Nano-Micro Lett. 2019, 11, 81.
[67]
N. R. Hemanth,; B. Kandasubramanian, Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: A review. Chem. Eng. J. 2020, 392, 123678.
[68]
L. Gao,; H. Hu,; G. J. Li,; Q. C. Zhu,; Y. Yu, Hierarchical 3D TiO2@Fe2O3 nanoframework arrays as high-performance anode materials. Nanoscale 2014, 6, 6463-6467.
[69]
C. Yang,; Y. Liu,; X. Sun,; Y. R. Zhang,; L. R. Hou,; Q. A. Zhang,; C. Z. Yuan, In-situ construction of hierarchical accordion-like TiO2/Ti3C2 nanohybrid as anode material for lithium and sodium ion batteries. Electrochim. Acta 2018, 271, 165-172.
[70]
S. L. Zhang,; B. Y. Guan,; H. B. Wu,; X. W. D. Lou, Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano-Micro Lett. 2018, 10, 44.
[71]
R. N. Guo,; S. L. Zhang,; H. J. Ying,; W. T. Yang,; J. L. Wang,; W. Q. Han, New, effective, and low-cost dual-functional binder for porous silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces. 2019, 11, 14051-14058.
[72]
Y. Zhang,; Y. B. Niu,; M. Q. Wang,; J. G. Yang,; S. Y. Lu,; J. Han,; S. J. Bao,; M. W. Xu, Exploration of a calcium-organic framework as an anode material for sodium-ion batteries. Chem. Commun. 2016, 52, 9969-9971.
[73]
D. B. Xiong,; X. F. Li,; Z. M. Bai,; S. G. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 2018, 14, 1703419.
[74]
W. Zhong,; M. L. Tao,; W. W. Tang,; W. Gao,; T. T. Yang,; Y. Q. Zhang,; R. M. Zhan,; S. J. Bao,; M. W. Xu, MXene-derivative pompon- like Na2Ti3O7@C anode material for advanced sodium ion batteries. Chem. Eng. J. 2019, 378, 122209.
[75]
Z. L. Hu,; X. X. Kuai,; J. T. Chen,; P. F. Sun,; Q. B. Zhang,; H. H. Wu,; L. Zhang, Strongly coupled MoS2 nanocrystal/Ti3C2 nanosheet hybrids enable high-capacity lithium-ion storage. ChemSusChem 2020, 13, 1485-1490.
[76]
H. W. Huang,; J. Cui,; G. X. Liu,; R. Bi,; L. Zhang, Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 2019, 13, 3448-3456.
File
12274_2020_3221_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 September 2020
Revised: 18 October 2020
Accepted: 01 November 2020
Published: 01 December 2020
Issue date: April 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors are appreciative of the financial support by the Tai hu Electric Corporation 0001 and the National Natural Science Foundation of China (No. 51901206).

Return