AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

De novo synthesis of bifunctional conjugated microporous polymers for synergistic coordination mediated uranium entrapment

Boxuan Yu1,2,3,§Lei Zhang1,4,§Gang Ye1,5( )Qingzhi Liu4,6Jiongli Li2,3Xudong Wang2,3Jing Chen1,5Shengming Xu1,5( )Shengqian Ma4,( )
Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Beijing Institute of Graphene Technology, Beijing 100094, China
Beijing Institute of Aeronautical Materials, Beijing 100085, China
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China
College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China

§ Boxuan Yu and Lei Zhang contributed equally to this work.

Present address: Department of Chemistry, University of North Texas, 1508 W. Mulberry St, Denton, TX 76201, USA

Show Author Information

Graphical Abstract

Abstract

This work reports a de novo synthesis of novel bifunctional conjugated microporous polymers (CMPs) exhibiting a synergistic-effect involved coordination behavior to uranium. It is highlighted that the synthetic strategy enables the engineering of the coordination environment within amidoxime functionalized CMP frameworks by specifically introducing ortho-substituted amino functionalities, enhancing the affinity to uranyl ions via forming synergistic complexes. The CMPs exhibit high Brunauer-Emmett-Teller (BET) surface area, well-developed three-dimensional (3D) networks with hierarchical porosity, and favorable chemical and thermal stability because of the covalently cross-linked structure. Compared with the amino-free counterparts, the adsorption capacity of bifunctional CMPs was increased by almost 70%, from 105 to 174 mg/g, indicating evidently enhanced binding ability to uranium. Moreover, new insights into coordination mechanism were obtained by in-depth X-ray photoelectron spectroscopy (XPS) analysis and density functional theory (DFT) calculation, suggesting a dominant role of the oxime ligands forming a 1:1 metal ions/ligands (M/L) coordination model with uranyl ions while demonstrating the synergistic engagement of the amino functionalities via direct binding to uranium center and hydrogen-bonding involved secondary-sphere interaction. This work sheds light on the underlying principles of ortho-substituted functionalities directed synergistic effect to promote the coordination of amidoxime with uranyl ions. And the synthetic strategy established here would enable the task-specific development of more novel CMP-based functional materials for broadened applications.

Electronic Supplementary Material

Download File(s)
12274_2020_3217_MOESM1_ESM.pdf (1.8 MB)

References

[1]
S. Das,; P. Heasman,; T. Ben,; S. L. Qiu, Porous organic materials: Strategic design and structure-function correlation. Chem. Rev. 2017, 117, 1515-1563.
[2]
J. R. Holst,; E. Stöckel,; D. J. Adams,; A. I. Cooper, High surface area networks from tetrahedral monomers: Metal-catalyzed coupling, thermal polymerization, and “click” chemistry. Macromolecules 2010, 43, 8531-8538.
[3]
K. Sonogashira,; Y. Tohda,; N. Hagihara, A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975, 16, 4467-4470.
[4]
J. X. Jiang,; F. B. Su,; A. Trewin,; C. D. Wood,; N. L. Campbell,; H. J. Niu,; C. Dickinson,; A. Y. Ganin,; M. J. Rosseinsky,; Y. Z. Khimyak, et al. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem., Int. Ed. 2007, 46, 8574-8578.
[5]
A. I. Cooper, Conjugated microporous polymers. Adv. Mater. 2009, 21, 1291-1295.
[6]
Z. Meng,; K. A. Mirica, Two-dimensional d-π conjugated metal- organic framework based on hexahydroxytrinaphthylene. Nano Res. 2021, 14, 369-375.
[7]
Y. H. Xu,; L. Chen,; Z. Q. Guo,; A. Nagai,; D. L. Jiang, Light-emitting conjugated polymers with microporous network architecture: Interweaving scaffold promotes electronic conjugation, facilitates exciton migration, and improves luminescence. J. Am. Chem. Soc. 2011, 133, 17622-17625.
[8]
H. Q. Liu,; Y. Wang,; W. Q. Mo,; H. L. Tang,; Z. Y. Cheng,; Y. Chen,; S. T. Zhang,; H. W. Ma,; B. Li,; X. B. Li, Dendrimer-based, high- luminescence conjugated microporous polymer films for highly sensitive and selective volatile organic compound sensor arrays. Adv. Funct. Mater. 2020, 30, 1910275.
[9]
Y. B. Zhou,; Z. P. Zhan, Conjugated microporous polymers for heterogeneous catalysis. Chem.—Asian J. 2018, 13, 9-19.
[10]
M. X. Liu,; B. L. Zhou,; L. Zhou,; Z. Xie,; S. Li,; L. Chen, Nitroxyl radical based conjugated microporous polymers as heterogeneous catalysts for selective aerobic alcohol oxidation. J. Mater. Chem. A 2018, 6, 9860-9865.
[11]
Y. Z. Liao,; H. G. Wang,; M. F. Zhu,; A. Thomas, Efficient supercapacitor energy storage using conjugated microporous polymer networks synthesized from Buchwald-Hartwig coupling. Adv. Mater. 2018, 30, 1705710.
[12]
J. S. M. Lee,; T. H. Wu,; B. M. Alston,; M. E. Briggs,; T. Hasell,; C. C. Hu,; A. I. Cooper, Porosity-engineered carbons for supercapacitive energy storage using conjugated microporous polymer precursors. J. Mater. Chem. A 2016, 4, 7665-7673.
[13]
Y. M. Ren,; C. B. Yu,; Z. H. Chen,; Y. X. Xu, Two-dimensional polymer nanosheets for efficient energy storage and conversion. Nano Res. in press, .
[14]
Y. C. Liu,; Y. Z. Cui,; C. H. Zhang,; J. F. Du,; S. Wang,; Y. Bai,; Z. Q. Liang,; X. W. Song, Post-cationic modification of a pyrimidine-based conjugated microporous polymer for enhancing the removal performance of anionic dyes in water. Chem.—Eur. J. 2018, 24, 7480-7488.
[15]
S. A,; Y. W. Zhang,; Z. P. Li,; H. Xia,; M. Xue,; X. M. Liu,; Y. Mu, Highly efficient and reversible iodine capture using a metalloporphyrin- based conjugated microporous polymer. Chem. Commun. 2014, 50, 8495-8498.
[16]
C. H. Yang,; S. Y. Li,; Z. C. Zhang,; H. Q. Wang,; H. L. Liu,; F. Jiao,; Z. G. Guo,; X. T. Zhang,; W. P. Hu, Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 2020, 16, 2001847.
[7]
L. Xiang,; Y. L. Zhu,; S. Gu,; D. Y. Chen,; X. Fu,; Y. D. Zhang,; G. P. Yu,; C. Y. Pan,; Y. H. Hu, A luminescent hypercrosslinked conjugated microporous polymer for efficient removal and detection of mercury ions. Macromol. Rapid Commun. 2015, 36, 1566-1571.
[18]
S. Yang,; Y. Cao,; T. Wang,; S. Y. Cai,; M. Y. Xu,; W. H. Lu,; D. B. Hua, Positively charged conjugated microporous polymers with antibiofouling activity for ultrafast and highly selective uranium extraction from seawater. Environ. Res. 2020, 183, 109214.
[19]
A. G. Slater,; A. I. Cooper, Function-led design of new porous materials. Science 2015, 348, aaa8075.
[20]
J. Chen,; W. Yan,; E. J. Townsend,; J. T. Feng,; L. Pan,; V. Del Angel Hernandez,; C. F. J. Faul, Tunable surface area, porosity, and function in conjugated microporous polymers. Angew. Chem., Int. Ed. 2019, 58, 11715-11719.
[21]
Y. H. Xu,; S. B. Jin,; H. Xu,; A. Nagai,; D. L. Jiang, Conjugated microporous polymers: Design, synthesis and application. Chem. Soc. Rev. 2013, 42, 8012-8031.
[22]
L. Zhou,; M. Bosscher,; C. S. Zhang,; S. Özçubukçu,; L. Zhang,; W. Zhang,; C. J. Li,; J. Z. Liu,; M. P. Jensen,; L. H. Lai, et al. A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat. Chem. 2014, 6, 236-241.
[23]
Q. Sun,; B. Aguila,; Y. P. Song,; S. Q. Ma, Tailored porous organic polymers for task-specific water purification. Acc. Chem. Res. 2020, 53, 812-821.
[24]
Y. Xie,; C. L. Chen,; X. M. Ren,; X. X. Wang,; H. Y. Wang,; X. K. Wang, Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog. Mater. Sci. 2019, 103, 180-234.
[25]
G. A. Gill,; L. J. Kuo,; C. J. Janke,; J. Park,; R. T. Jeters,; G. T. Bonheyo,; H. B. Pan,; C. Wai,; T. Khangaonkar,; L. Bianucci, et al. The uranium from seawater program at the pacific northwest national laboratory: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies. Ind. Eng. Chem. Res. 2016, 55, 4264-4277.
[26]
S. Chu,; A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.
[27]
Q. Sun,; B. Aguila,; S. Q. Ma, Opportunities of porous organic polymers for radionuclide sequestration. Trends Chem. 2019, 1, 292-303.
[28]
S. O. Odoh,; G. D. Bondarevsky,; J. Karpus,; Q. Cui,; C. He,; R. Spezia,; L. Gagliardi, UO22+ uptake by proteins: Understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity. J. Am. Chem. Soc. 2014, 136, 17484-17494.
[29]
B. Y. Li,; Q. Sun,; Y. M. Zhang,; C. W. Abney,; B. Aguila,; W. B. Lin,; S. Q. Ma, Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions. ACS Appl. Mater. Interfaces 2017, 9, 12511-12517.
[30]
M. Y. Xu,; X. L. Han,; T. Wang,; S. H. Li,; D. B. Hua, Conjugated microporous polymers bearing phosphonate ligands as an efficient sorbent for potential uranium extraction from high-level liquid wastes. J. Mater. Chem. A 2018, 6, 13894-13900.
[31]
T. Wang,; M. Y. Xu,; X. L. Han,; S. Yang,; D. B. Hua, Petroleum pitch-based porous aromatic frameworks with phosphonate ligand for efficient separation of uranium from radioactive effluents. J. Hazard. Mater. 2019, 368, 214-220.
[32]
B. Kiskan,; J. Weber, Versatile postmodification of conjugated microporous polymers using thiol-yne chemistry. ACS Macro Lett. 2011, 1, 37-40.
[33]
C. W. Abney,; R. T. Mayes,; T. Saito,; S. Dai, Materials for the recovery of uranium from seawater. Chem. Rev. 2017, 117, 13935-14013.
[34]
B. Aguila,; Q. Sun,; H. Cassady,; C. W. Abney,; B. Y. Li,; S. Q. Ma, Design strategies to enhance amidoxime chelators for uranium recovery. ACS Appl. Mater. Interfaces 2019, 11, 30919-30926.
[35]
Q. Sun,; B. Aguila,; L. D. Earl,; C. W. Abney,; L. Wojtas,; P. K. Thallapally,; S. Q. Ma, Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv. Mater. 2018, 30, 1705479.
[36]
G. X. Tian,; S. J. Teat,; Z. Y. Zhang,; L. F. Rao, Sequestering uranium from seawater: Binding strength and modes of uranyl complexes with glutarimidedioxime. Dalton Trans. 2012, 41, 11579-11586.
[37]
F. Eloy,; R. Lenaers, The chemistry of amidoximes and related compounds. Chem. Rev. 1962, 62, 155-183.
[38]
S. P. Kelley,; P. S. Barber,; P. H. K. Mullins,; R. D. Rogers, Structural clues to UO22+/VO2+ competition in seawater extraction using amidoxime-based extractants. Chem. Commun. 2014, 50, 12504-12507.
[39]
S. Vukovic,; L. A. Watson,; S. O. Kang,; R. Custelcean,; B. P. Hay, How amidoximate binds the uranyl cation. Inorg. Chem. 2012, 51, 3855-3859.
[40]
A. Y. Zhang,; T. Asakura,; G. Uchiyama, The adsorption mechanism of uranium(VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group. React. Funct. Polym. 2003, 57, 67-76.
[41]
L. Zhang,; N. Pu,; B. X. Yu,; G. Ye,; J. Chen,; S. M. Xu,; S. Q. Ma, Skeleton engineering of homocoupled conjugated microporous polymers for highly efficient uranium capture via synergistic coordination. ACS Appl. Mater. Interfaces 2020, 12, 3688-3696.
[42]
S. Vukovic,; B. P. Hay, De novo structure-based design of bis- amidoxime uranophiles. Inorg. Chem. 2013, 52, 7805-7810.
[43]
C. Y. Bai,; M. C. Zhang,; B. Li,; X. S. Zhao,; S. Zhang,; L. Wang,; Y. Li,; J. Zhang,; L. J. Ma,; S. J. Li, Modifiable diyne-based covalent organic framework: A versatile platform for in situ multipurpose functionalization. RSC Adv. 2016, 6, 39150-39158.
[44]
Q. Sun,; B. Aguila,; J. Perman,; A. S. Ivanov,; V. S. Bryantsev,; L. D. Earl,; C. W. Abney,; L. Wojtas,; S. Q. Ma, Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste. Nat. Commun. 2018, 9, 1644.
[45]
M. Y. Xu,; T. Wang,; P. Gao,; L. Zhao,; L. Zhou,; D. B. Hua, Highly fluorescent conjugated microporous polymers for concurrent adsorption and detection of uranium. J. Mater. Chem. A 2019, 7, 11214-11222.
[46]
J. Xiong,; S. Hu,; Y. Liu,; J. Yu,; H. Z. Yu,; L. Xie,; J. Wen,; X. L. Wang, Polypropylene modified with amidoxime/carboxyl groups in separating uranium(VI) from thorium(IV) in aqueous solutions. ACS Sustainable Chem. Eng. 2017, 5, 1924-1930.
[47]
S. D. Alexandratos,; X. P. Zhu,; M. Florent,; R. Sellin, Polymer- supported bifunctional amidoximes for the sorption of uranium from seawater. Ind. Eng. Chem. Res. 2016, 55, 4208-4216.
[48]
Y. Q. Wei,; J. Qian,; L. Huang,; D. B. Hua, Bifunctional polymeric microspheres for efficient uranium sorption from aqueous solution: Synergistic interaction of positive charge and amidoxime group. RSC Adv. 2015, 5, 64286-64292.
[49]
Y. Zhang,; Y. Zhang,; Y. L. Sun,; X. Du,; J. Y. Shi,; W. D. Wang,; W. Wang, 4-(N,N-Dimethylamino)pyridine-embedded nanoporous conjugated polymer as a highly active heterogeneous organocatalyst. Chem. -Eur. J. 2012, 18, 6328-6334.
[50]
Z. Q. Bai,; L. Y. Yuan,; L. Zhu,; Z. R. Liu,; S. Q. Chu,; L. R. Zheng,; J. Zhang,; Z. F. Chaid,; W. Q. Shi, Introduction of amino groups into acid-resistant mofs for enhanced U(VI) sorption. J. Mater. Chem. A 2015, 3, 525-534.
[51]
M. H. Alkordi,; R. R. Haikal,; Y. S. Hassan,; A. H. Emwas,; Y. Belmabkhout, Poly-functional porous-organic polymers to access functionality—CO2 sorption energetic relationships. J. Mater. Chem. A 2015, 3, 22584-22590.
[52]
J. X. Jiang,; F. B. Su,; A. Trewin,; C. D. Wood,; H. J. Niu,; J. T. A. Jones,; Y. Z. Khimyak,; A. I. Cooper, Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J. Am. Chem. Soc. 2008, 130, 7710-7720.
[53]
H. B. Pan,; L. J. Kuo,; J. Wood,; J. Strivens,; G. A. Gill,; C. J. Janke,; C. M. Wai, Towards understanding KOH conditioning of amidoxime- based polymer adsorbents for sequestering uranium from seawater. RSC Adv. 2015, 5, 100715-100721.
[54]
S. Das,; S. Brown,; R. T. Mayes,; C. J. Janke,; C. Tsouris,; L. J. Kuo,; G. Gill,; S. Dai, Novel poly(imide dioxime) sorbents: Development and testing for enhanced extraction of uranium from natural seawater. Chem. Eng. J. 2016, 298, 125-135.
[55]
Z. J. Yu,; E. T. Kang,; K. G. Neoh, Amidoximation of the acrylonitrile polymer grafted on poly(tetrafluoroethylene-co-hexafluoropropylene) films and its relevance to the electroless plating of copper. Langmuir 2002, 18, 10221-10230.
[56]
H. Omichi,; A. Katakai,; T. Sugo,; J. Okamoto, A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. Sep. Sci. Technol. 1985, 20, 163-178.
[57]
P. Y. Ju,; S. J. Wu,; Q. Su,; X. D. Li,; Z. Q. Liu,; G. H. Li,; Q. L. Wu, Salen-porphyrin-based conjugated microporous polymer supported pd nanoparticles: Highly efficient heterogeneous catalysts for aqueous C-C coupling reactions. J. Mater. Chem. A 2019, 7, 2660-2666.
[58]
C. Xu,; N. Hedin, Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and co2 adsorption. J. Mater. Chem. A 2013, 1, 3406-3414.
[59]
M. H. Sun,; S. Z. Huang,; L. H. Chen,; Y. Li,; X. Y. Yang,; Z. Y. Yuan,; B. L. Su, Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 2016, 45, 3479-3563.
[60]
Y. Yang,; J. C. Wang,; F. C. Wu,; G. Ye,; R. Yi,; Y. X. Lu,; J. Chen, Surface-initiated SET-LRP mediated by mussel-inspired polydopamine chemistry for controlled building of novel core-shell magnetic nanoparticles for highly-efficient uranium enrichment. Polym. Chem. 2016, 7, 2427-2435.
[61]
F. C. Wu,; G. Ye,; Y. K. Liu,; R. Yi,; X. M. Huo,; Y. X. Lu,; J. Chen, New short-channel SBA-15 mesoporous silicas functionalized with polyazamacrocyclic ligands for selective capturing of palladium ions in HNO3 media. RSC Adv. 2016, 6, 66537-66547.
[62]
M. Doğan,; H. Abak,; M. Alkan, Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters. J. Hazard. Mater. 2009, 164, 172-181.
[63]
S. Zhang,; X. S. Zhao,; B. Li,; C. Y. Bai,; Y. Li,; L. Wang,; R. Wen,; M. C. Zhang,; L. J. Ma,; S. J. Li, “Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: Design, synthesis and selective sorption towards uranium at high acidic condition. J. Hazard. Mater. 2016, 314, 95-104.
[64]
F. C. Wu,; G. Ye,; R. Yi,; T. X. Sun,; C. Xu,; J. Chen, Novel polyazamacrocyclic receptor decorated core-shell superparamagnetic microspheres for selective binding and magnetic enrichment of palladium: Synthesis, adsorptive behavior and coordination mechanism. Dalton Trans. 2016, 45, 9553-9564.
[65]
J. S. Stevens,; A. C. de Luca,; M. Pelendritis,; G. Terenghi,; S. Downes,; S. L. M. Schroeder, Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron spectroscopy (XPS). Surf. Interface Anal. 2013, 45, 1238-1246.
Nano Research
Pages 788-796
Cite this article:
Yu B, Zhang L, Ye G, et al. De novo synthesis of bifunctional conjugated microporous polymers for synergistic coordination mediated uranium entrapment. Nano Research, 2021, 14(3): 788-796. https://doi.org/10.1007/s12274-020-3217-7
Topics:

779

Views

25

Crossref

0

Web of Science

27

Scopus

4

CSCD

Altmetrics

Received: 07 September 2020
Revised: 19 October 2020
Accepted: 29 October 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return