[1]
S. Das,; P. Heasman,; T. Ben,; S. L. Qiu, Porous organic materials: Strategic design and structure-function correlation. Chem. Rev. 2017, 117, 1515-1563.
[2]
J. R. Holst,; E. Stöckel,; D. J. Adams,; A. I. Cooper, High surface area networks from tetrahedral monomers: Metal-catalyzed coupling, thermal polymerization, and “click” chemistry. Macromolecules 2010, 43, 8531-8538.
[3]
K. Sonogashira,; Y. Tohda,; N. Hagihara, A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975, 16, 4467-4470.
[4]
J. X. Jiang,; F. B. Su,; A. Trewin,; C. D. Wood,; N. L. Campbell,; H. J. Niu,; C. Dickinson,; A. Y. Ganin,; M. J. Rosseinsky,; Y. Z. Khimyak, et al. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem., Int. Ed. 2007, 46, 8574-8578.
[5]
A. I. Cooper, Conjugated microporous polymers. Adv. Mater. 2009, 21, 1291-1295.
[6]
Z. Meng,; K. A. Mirica, Two-dimensional d-π conjugated metal- organic framework based on hexahydroxytrinaphthylene. Nano Res. 2021, 14, 369-375.
[7]
Y. H. Xu,; L. Chen,; Z. Q. Guo,; A. Nagai,; D. L. Jiang, Light-emitting conjugated polymers with microporous network architecture: Interweaving scaffold promotes electronic conjugation, facilitates exciton migration, and improves luminescence. J. Am. Chem. Soc. 2011, 133, 17622-17625.
[8]
H. Q. Liu,; Y. Wang,; W. Q. Mo,; H. L. Tang,; Z. Y. Cheng,; Y. Chen,; S. T. Zhang,; H. W. Ma,; B. Li,; X. B. Li, Dendrimer-based, high- luminescence conjugated microporous polymer films for highly sensitive and selective volatile organic compound sensor arrays. Adv. Funct. Mater. 2020, 30, 1910275.
[9]
Y. B. Zhou,; Z. P. Zhan, Conjugated microporous polymers for heterogeneous catalysis. Chem.—Asian J. 2018, 13, 9-19.
[10]
M. X. Liu,; B. L. Zhou,; L. Zhou,; Z. Xie,; S. Li,; L. Chen, Nitroxyl radical based conjugated microporous polymers as heterogeneous catalysts for selective aerobic alcohol oxidation. J. Mater. Chem. A 2018, 6, 9860-9865.
[11]
Y. Z. Liao,; H. G. Wang,; M. F. Zhu,; A. Thomas, Efficient supercapacitor energy storage using conjugated microporous polymer networks synthesized from Buchwald-Hartwig coupling. Adv. Mater. 2018, 30, 1705710.
[12]
J. S. M. Lee,; T. H. Wu,; B. M. Alston,; M. E. Briggs,; T. Hasell,; C. C. Hu,; A. I. Cooper, Porosity-engineered carbons for supercapacitive energy storage using conjugated microporous polymer precursors. J. Mater. Chem. A 2016, 4, 7665-7673.
[13]
Y. M. Ren,; C. B. Yu,; Z. H. Chen,; Y. X. Xu, Two-dimensional polymer nanosheets for efficient energy storage and conversion. Nano Res. in press, .
[14]
Y. C. Liu,; Y. Z. Cui,; C. H. Zhang,; J. F. Du,; S. Wang,; Y. Bai,; Z. Q. Liang,; X. W. Song, Post-cationic modification of a pyrimidine-based conjugated microporous polymer for enhancing the removal performance of anionic dyes in water. Chem.—Eur. J. 2018, 24, 7480-7488.
[15]
S. A,; Y. W. Zhang,; Z. P. Li,; H. Xia,; M. Xue,; X. M. Liu,; Y. Mu, Highly efficient and reversible iodine capture using a metalloporphyrin- based conjugated microporous polymer. Chem. Commun. 2014, 50, 8495-8498.
[16]
C. H. Yang,; S. Y. Li,; Z. C. Zhang,; H. Q. Wang,; H. L. Liu,; F. Jiao,; Z. G. Guo,; X. T. Zhang,; W. P. Hu, Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 2020, 16, 2001847.
[7]
L. Xiang,; Y. L. Zhu,; S. Gu,; D. Y. Chen,; X. Fu,; Y. D. Zhang,; G. P. Yu,; C. Y. Pan,; Y. H. Hu, A luminescent hypercrosslinked conjugated microporous polymer for efficient removal and detection of mercury ions. Macromol. Rapid Commun. 2015, 36, 1566-1571.
[18]
S. Yang,; Y. Cao,; T. Wang,; S. Y. Cai,; M. Y. Xu,; W. H. Lu,; D. B. Hua, Positively charged conjugated microporous polymers with antibiofouling activity for ultrafast and highly selective uranium extraction from seawater. Environ. Res. 2020, 183, 109214.
[19]
A. G. Slater,; A. I. Cooper, Function-led design of new porous materials. Science 2015, 348, aaa8075.
[20]
J. Chen,; W. Yan,; E. J. Townsend,; J. T. Feng,; L. Pan,; V. Del Angel Hernandez,; C. F. J. Faul, Tunable surface area, porosity, and function in conjugated microporous polymers. Angew. Chem., Int. Ed. 2019, 58, 11715-11719.
[21]
Y. H. Xu,; S. B. Jin,; H. Xu,; A. Nagai,; D. L. Jiang, Conjugated microporous polymers: Design, synthesis and application. Chem. Soc. Rev. 2013, 42, 8012-8031.
[22]
L. Zhou,; M. Bosscher,; C. S. Zhang,; S. Özçubukçu,; L. Zhang,; W. Zhang,; C. J. Li,; J. Z. Liu,; M. P. Jensen,; L. H. Lai, et al. A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat. Chem. 2014, 6, 236-241.
[23]
Q. Sun,; B. Aguila,; Y. P. Song,; S. Q. Ma, Tailored porous organic polymers for task-specific water purification. Acc. Chem. Res. 2020, 53, 812-821.
[24]
Y. Xie,; C. L. Chen,; X. M. Ren,; X. X. Wang,; H. Y. Wang,; X. K. Wang, Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog. Mater. Sci. 2019, 103, 180-234.
[25]
G. A. Gill,; L. J. Kuo,; C. J. Janke,; J. Park,; R. T. Jeters,; G. T. Bonheyo,; H. B. Pan,; C. Wai,; T. Khangaonkar,; L. Bianucci, et al. The uranium from seawater program at the pacific northwest national laboratory: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies. Ind. Eng. Chem. Res. 2016, 55, 4264-4277.
[26]
S. Chu,; A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.
[27]
Q. Sun,; B. Aguila,; S. Q. Ma, Opportunities of porous organic polymers for radionuclide sequestration. Trends Chem. 2019, 1, 292-303.
[28]
S. O. Odoh,; G. D. Bondarevsky,; J. Karpus,; Q. Cui,; C. He,; R. Spezia,; L. Gagliardi, UO22+ uptake by proteins: Understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity. J. Am. Chem. Soc. 2014, 136, 17484-17494.
[29]
B. Y. Li,; Q. Sun,; Y. M. Zhang,; C. W. Abney,; B. Aguila,; W. B. Lin,; S. Q. Ma, Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions. ACS Appl. Mater. Interfaces 2017, 9, 12511-12517.
[30]
M. Y. Xu,; X. L. Han,; T. Wang,; S. H. Li,; D. B. Hua, Conjugated microporous polymers bearing phosphonate ligands as an efficient sorbent for potential uranium extraction from high-level liquid wastes. J. Mater. Chem. A 2018, 6, 13894-13900.
[31]
T. Wang,; M. Y. Xu,; X. L. Han,; S. Yang,; D. B. Hua, Petroleum pitch-based porous aromatic frameworks with phosphonate ligand for efficient separation of uranium from radioactive effluents. J. Hazard. Mater. 2019, 368, 214-220.
[32]
B. Kiskan,; J. Weber, Versatile postmodification of conjugated microporous polymers using thiol-yne chemistry. ACS Macro Lett. 2011, 1, 37-40.
[33]
C. W. Abney,; R. T. Mayes,; T. Saito,; S. Dai, Materials for the recovery of uranium from seawater. Chem. Rev. 2017, 117, 13935-14013.
[34]
B. Aguila,; Q. Sun,; H. Cassady,; C. W. Abney,; B. Y. Li,; S. Q. Ma, Design strategies to enhance amidoxime chelators for uranium recovery. ACS Appl. Mater. Interfaces 2019, 11, 30919-30926.
[35]
Q. Sun,; B. Aguila,; L. D. Earl,; C. W. Abney,; L. Wojtas,; P. K. Thallapally,; S. Q. Ma, Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv. Mater. 2018, 30, 1705479.
[36]
G. X. Tian,; S. J. Teat,; Z. Y. Zhang,; L. F. Rao, Sequestering uranium from seawater: Binding strength and modes of uranyl complexes with glutarimidedioxime. Dalton Trans. 2012, 41, 11579-11586.
[37]
F. Eloy,; R. Lenaers, The chemistry of amidoximes and related compounds. Chem. Rev. 1962, 62, 155-183.
[38]
S. P. Kelley,; P. S. Barber,; P. H. K. Mullins,; R. D. Rogers, Structural clues to UO22+/VO2+ competition in seawater extraction using amidoxime-based extractants. Chem. Commun. 2014, 50, 12504-12507.
[39]
S. Vukovic,; L. A. Watson,; S. O. Kang,; R. Custelcean,; B. P. Hay, How amidoximate binds the uranyl cation. Inorg. Chem. 2012, 51, 3855-3859.
[40]
A. Y. Zhang,; T. Asakura,; G. Uchiyama, The adsorption mechanism of uranium(VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group. React. Funct. Polym. 2003, 57, 67-76.
[41]
L. Zhang,; N. Pu,; B. X. Yu,; G. Ye,; J. Chen,; S. M. Xu,; S. Q. Ma, Skeleton engineering of homocoupled conjugated microporous polymers for highly efficient uranium capture via synergistic coordination. ACS Appl. Mater. Interfaces 2020, 12, 3688-3696.
[42]
S. Vukovic,; B. P. Hay, De novo structure-based design of bis- amidoxime uranophiles. Inorg. Chem. 2013, 52, 7805-7810.
[43]
C. Y. Bai,; M. C. Zhang,; B. Li,; X. S. Zhao,; S. Zhang,; L. Wang,; Y. Li,; J. Zhang,; L. J. Ma,; S. J. Li, Modifiable diyne-based covalent organic framework: A versatile platform for in situ multipurpose functionalization. RSC Adv. 2016, 6, 39150-39158.
[44]
Q. Sun,; B. Aguila,; J. Perman,; A. S. Ivanov,; V. S. Bryantsev,; L. D. Earl,; C. W. Abney,; L. Wojtas,; S. Q. Ma, Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste. Nat. Commun. 2018, 9, 1644.
[45]
M. Y. Xu,; T. Wang,; P. Gao,; L. Zhao,; L. Zhou,; D. B. Hua, Highly fluorescent conjugated microporous polymers for concurrent adsorption and detection of uranium. J. Mater. Chem. A 2019, 7, 11214-11222.
[46]
J. Xiong,; S. Hu,; Y. Liu,; J. Yu,; H. Z. Yu,; L. Xie,; J. Wen,; X. L. Wang, Polypropylene modified with amidoxime/carboxyl groups in separating uranium(VI) from thorium(IV) in aqueous solutions. ACS Sustainable Chem. Eng. 2017, 5, 1924-1930.
[47]
S. D. Alexandratos,; X. P. Zhu,; M. Florent,; R. Sellin, Polymer- supported bifunctional amidoximes for the sorption of uranium from seawater. Ind. Eng. Chem. Res. 2016, 55, 4208-4216.
[48]
Y. Q. Wei,; J. Qian,; L. Huang,; D. B. Hua, Bifunctional polymeric microspheres for efficient uranium sorption from aqueous solution: Synergistic interaction of positive charge and amidoxime group. RSC Adv. 2015, 5, 64286-64292.
[49]
Y. Zhang,; Y. Zhang,; Y. L. Sun,; X. Du,; J. Y. Shi,; W. D. Wang,; W. Wang, 4-(N,N-Dimethylamino)pyridine-embedded nanoporous conjugated polymer as a highly active heterogeneous organocatalyst. Chem. -Eur. J. 2012, 18, 6328-6334.
[50]
Z. Q. Bai,; L. Y. Yuan,; L. Zhu,; Z. R. Liu,; S. Q. Chu,; L. R. Zheng,; J. Zhang,; Z. F. Chaid,; W. Q. Shi, Introduction of amino groups into acid-resistant mofs for enhanced U(VI) sorption. J. Mater. Chem. A 2015, 3, 525-534.
[51]
M. H. Alkordi,; R. R. Haikal,; Y. S. Hassan,; A. H. Emwas,; Y. Belmabkhout, Poly-functional porous-organic polymers to access functionality—CO2 sorption energetic relationships. J. Mater. Chem. A 2015, 3, 22584-22590.
[52]
J. X. Jiang,; F. B. Su,; A. Trewin,; C. D. Wood,; H. J. Niu,; J. T. A. Jones,; Y. Z. Khimyak,; A. I. Cooper, Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J. Am. Chem. Soc. 2008, 130, 7710-7720.
[53]
H. B. Pan,; L. J. Kuo,; J. Wood,; J. Strivens,; G. A. Gill,; C. J. Janke,; C. M. Wai, Towards understanding KOH conditioning of amidoxime- based polymer adsorbents for sequestering uranium from seawater. RSC Adv. 2015, 5, 100715-100721.
[54]
S. Das,; S. Brown,; R. T. Mayes,; C. J. Janke,; C. Tsouris,; L. J. Kuo,; G. Gill,; S. Dai, Novel poly(imide dioxime) sorbents: Development and testing for enhanced extraction of uranium from natural seawater. Chem. Eng. J. 2016, 298, 125-135.
[55]
Z. J. Yu,; E. T. Kang,; K. G. Neoh, Amidoximation of the acrylonitrile polymer grafted on poly(tetrafluoroethylene-co-hexafluoropropylene) films and its relevance to the electroless plating of copper. Langmuir 2002, 18, 10221-10230.
[56]
H. Omichi,; A. Katakai,; T. Sugo,; J. Okamoto, A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. Sep. Sci. Technol. 1985, 20, 163-178.
[57]
P. Y. Ju,; S. J. Wu,; Q. Su,; X. D. Li,; Z. Q. Liu,; G. H. Li,; Q. L. Wu, Salen-porphyrin-based conjugated microporous polymer supported pd nanoparticles: Highly efficient heterogeneous catalysts for aqueous C-C coupling reactions. J. Mater. Chem. A 2019, 7, 2660-2666.
[58]
C. Xu,; N. Hedin, Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and co2 adsorption. J. Mater. Chem. A 2013, 1, 3406-3414.
[59]
M. H. Sun,; S. Z. Huang,; L. H. Chen,; Y. Li,; X. Y. Yang,; Z. Y. Yuan,; B. L. Su, Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 2016, 45, 3479-3563.
[60]
Y. Yang,; J. C. Wang,; F. C. Wu,; G. Ye,; R. Yi,; Y. X. Lu,; J. Chen, Surface-initiated SET-LRP mediated by mussel-inspired polydopamine chemistry for controlled building of novel core-shell magnetic nanoparticles for highly-efficient uranium enrichment. Polym. Chem. 2016, 7, 2427-2435.
[61]
F. C. Wu,; G. Ye,; Y. K. Liu,; R. Yi,; X. M. Huo,; Y. X. Lu,; J. Chen, New short-channel SBA-15 mesoporous silicas functionalized with polyazamacrocyclic ligands for selective capturing of palladium ions in HNO3 media. RSC Adv. 2016, 6, 66537-66547.
[62]
M. Doğan,; H. Abak,; M. Alkan, Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters. J. Hazard. Mater. 2009, 164, 172-181.
[63]
S. Zhang,; X. S. Zhao,; B. Li,; C. Y. Bai,; Y. Li,; L. Wang,; R. Wen,; M. C. Zhang,; L. J. Ma,; S. J. Li, “Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: Design, synthesis and selective sorption towards uranium at high acidic condition. J. Hazard. Mater. 2016, 314, 95-104.
[64]
F. C. Wu,; G. Ye,; R. Yi,; T. X. Sun,; C. Xu,; J. Chen, Novel polyazamacrocyclic receptor decorated core-shell superparamagnetic microspheres for selective binding and magnetic enrichment of palladium: Synthesis, adsorptive behavior and coordination mechanism. Dalton Trans. 2016, 45, 9553-9564.
[65]
J. S. Stevens,; A. C. de Luca,; M. Pelendritis,; G. Terenghi,; S. Downes,; S. L. M. Schroeder, Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron spectroscopy (XPS). Surf. Interface Anal. 2013, 45, 1238-1246.