Journal Home > Volume 14 , Issue 5

Perovskite variants have attracted wide interest because of the lead-free nature and strong self-trapped exciton (STE) emission. Divalent Sn(II) in CsSnX3 perovskites is easily oxidized to tetravalent Sn(IV), and the resulted Cs2SnCl6 vacancy-ordered perovskite variant exhibits poor photoluminescence property although it has a direct band gap. Controllable doping is an effective strategy to regulate the optical properties of Cs2SnX6. Herein, combining the first principles calculation and spectral analysis, we attempted to understand the luminescence mechanism of Te4+-doped Cs2SnCl6 lead-free perovskite variants. The chemical potential and defect formation energy are calculated to confirm theoretically the feasible substitutability of tetravalent Te4+ ions in Cs2SnCl6 lattices for the Sn-site. Through analysis of the absorption, emission/excitation, and time-resolved photoluminescence (PL) spectroscopy, the intense green-yellow emission in Te4+:Cs2SnCl6 was considered to originate from the triplet Te(IV) ion 3P11S0 STE recombination. Temperature-dependent PL spectra demonstrated the strong electron-phonon coupling that inducing an evident lattice distortion to produce STEs. We further calculated the electronic band structure and molecular orbital levels to reveal the underlying photophysical process. These results will shed light on the doping modulated luminescence properties in stable lead-free Cs2MX6 vacancy-ordered perovskite variants and be helpful to understand the optical properties and physical processes of doped perovskite variants.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Boosting triplet self-trapped exciton emission in Te(IV)-doped Cs2SnCl6 perovskite variants

Show Author's information Ruosheng Zeng1,2Kun Bai2Qilin Wei1Tong Chang1Jun Yan1Bao Ke1Jialuo Huang1Liushun Wang3Weichang Zhou3( )Sheng Cao1Jialong Zhao1( )Bingsuo Zou1( )
School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Synergetic Innovation Center for Quantum Effects and Application, Hunan Normal University, Changsha 410081, China

Abstract

Perovskite variants have attracted wide interest because of the lead-free nature and strong self-trapped exciton (STE) emission. Divalent Sn(II) in CsSnX3 perovskites is easily oxidized to tetravalent Sn(IV), and the resulted Cs2SnCl6 vacancy-ordered perovskite variant exhibits poor photoluminescence property although it has a direct band gap. Controllable doping is an effective strategy to regulate the optical properties of Cs2SnX6. Herein, combining the first principles calculation and spectral analysis, we attempted to understand the luminescence mechanism of Te4+-doped Cs2SnCl6 lead-free perovskite variants. The chemical potential and defect formation energy are calculated to confirm theoretically the feasible substitutability of tetravalent Te4+ ions in Cs2SnCl6 lattices for the Sn-site. Through analysis of the absorption, emission/excitation, and time-resolved photoluminescence (PL) spectroscopy, the intense green-yellow emission in Te4+:Cs2SnCl6 was considered to originate from the triplet Te(IV) ion 3P11S0 STE recombination. Temperature-dependent PL spectra demonstrated the strong electron-phonon coupling that inducing an evident lattice distortion to produce STEs. We further calculated the electronic band structure and molecular orbital levels to reveal the underlying photophysical process. These results will shed light on the doping modulated luminescence properties in stable lead-free Cs2MX6 vacancy-ordered perovskite variants and be helpful to understand the optical properties and physical processes of doped perovskite variants.

Keywords: electron-phonon coupling, Cs2SnCl6 perovskite variants, equivalent ion doping, self-trapped exciton (STE) emission, first principles calculation

References(53)

[1]
H. Chen,; H. Wang,; J. Wu,; F. Wang,; T. Zhang,; Y. F. Wang,; D. T. Liu,; S. B. Li,; R. V. Penty,; I. H. White, Flexible optoelectronic devices based on metal halide perovskites. Nano Res. 2020, 13, 1997-2018.
[2]
A. Granados del Águila,; T. T. H. Do,; J. Xing,; W. J. Jee,; J. B. Khurgin,; Q. H. Xiong, Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals. Nano Res. 2020, 13, 1962-1969.
[3]
P. C. Lin,; H. B. Chen,; Z. Wei,; Y. R. Lin,; J. H. Lin,; Y. Chen,; Z. D. Cheng, Continuous-flow synthesis of doped all-inorganic perovskite nanocrystals enabled by a microfluidic reactor for light-emitting diode application. Sci. China Mater. 2020, 63, 1526-1536.
[4]
N. G. Park,; K. Zhu, Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 2020, 5, 333-350.
[5]
Y. P. Fu,; H. M. Zhu,; J. Chen,; M. P. Hautzinger,; X. Y. Zhu,; S. Jin, Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 2019, 4, 169-188.
[6]
J. S. Huang,; Y. B. Yuan,; Y. C. Shao,; Y. F. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2017, 2, 17042.
[7]
K. Frohna,; T. Deshpande,; J. Harter,; W. Peng,; B. A. Barker,; J. B. Neaton,; S. G. Louie,; O. M. Bakr,; D. Hsieh,; M. Bernardi, Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals. Nat. Commun. 2018, 9, 1829.
[8]
X. J. Li,; M. M. Chen,; S. L. Mei,; B. Z. Wang,; K. Y. Wang,; G. C. Xing,; Z. K. Tang, Light-induced phase transition and photochromism in all-inorganic two-dimensional Cs2PbI2Cl2 perovskite. Sci. China Mater. 2020, 63, 1510-1517.
[9]
H. J. Yang,; T. Cai,; E. X. Liu,; K. Hills-Kimball,; J. B. Gao,; O. Chen, Synthesis and transformation of zero-dimensional Cs3BiX6 (X=Cl, Br) perovskite-analogue nanocrystals. Nano Res. 2020, 13, 282-291.
[10]
H. Liu,; M. Siron,; M. Y. Gao,; D. Lu,; Y. Bekenstein,; D. D. Zhang,; L. T. Dou,; A. P. Alivisatos,; P. D. Yang, Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly. Nano Res. 2020, 13, 1453-1458.
[11]
M. B. Faheem,; B. Khan,; C. Feng,; M. U. Farooq,; F. Raziq,; Y. Q. Xiao,; Y. B. Li, All-inorganic perovskite solar cells: Energetics, key challenges, and strategies toward commercialization. ACS Energy Lett. 2020, 5, 290-320.
[12]
M. G. Ju,; M. Chen,; Y. Y. Zhou,; J. Dai,; L. Ma,; N. P. Padture,; X. C. Zeng, Toward eco-friendly and stable perovskite materials for photovoltaics. Joule 2018, 2, 1231-1241.
[13]
Y. Park,; A. Jana,; C. W. Myung,; T. Yoon,; G. Lee,; C. C. Kocher,; G. H. Ying,; V. Osokin,; R. A. Taylor,; K. S. Kim, Enhanced photoluminescence quantum yield of MAPbBr3 nanocrystals by passivation using graphene. Nano Res. 2020, 13, 932-938.
[14]
W. F. Yang,; F. Igbari,; Y. H. Lou,; Z. K. Wang,; L. S. Liao, Tin halide perovskites: Progress and challenges. Adv. Energy Mater. 2020, 10, 1902584.
[15]
C. X. Ran,; W. Y. Gao,; J. R. Li,; J. Xi,; L. Li,; J. F. Dai,; Y. G. Yang,; X. Y. Gao,; H. Dong,; B. Jiao, et al. Conjugated organic cations enable efficient self-healing FASnI3 solar cells. Joule 2019, 3, 3072-3087.
[16]
X. F. Qiu,; B. Q. Cao,; S. Yuan,; X. F. Chen,; Z. W. Qiu,; Y. N. Jiang,; Q. Ye,; H. Q. Wang,; H. B. Zeng,; J. Liu, et al. From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Solar Energy Mater. Solar Cells 2017, 159, 227-234.
[17]
B. Lee,; C. C. Stoumpos,; N. J. Zhou,; F. Hao,; C. Malliakas,; C. Y. Yeh,; T. J. Marks,; M. G. Kanatzidis,; R. P. H. Chang, Air-stable molecular semiconducting Iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. J. Am. Chem. Soc. 2014, 136, 15379-15385.
[18]
X. Y. Zhang,; L. N. Li,; Z. H. Sun,; J. H. Luo, Rational chemical doping of metal halide perovskites. Chem. Soc. Rev. 2019, 48, 517-539.
[19]
Y. Y. Jing,; Y. Liu,; X. X. Jiang,; M. S. Molokeev,; Z. S. Lin,; Z. G. Xia, Sb3+ dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals. Chem. Mater. 2020, 32, 5327-5334.
[20]
Y. Liu,; X. M. Rong,; M. Z. Li,; M. S. Molokeev,; J. Zhao,; Z. G. Xia, Incorporating rare-earth terbium(III) ions into Cs2AgInCl6:Bi nanocrystals toward tunable photoluminescence. Angew. Chem., Int. Ed. 2020, 59, 11634-11640.
[21]
Q. Sun,; S. P. Wang,; C. Y. Zhao,; J. Leng,; W. M. Tian,; S. Y. Jin, Excitation-dependent emission color tuning from an individual Mn-doped perovskite microcrystal. J. Am. Chem. Soc. 2019, 141, 20089-20096.
[22]
L. L. Fei,; X. Yuan,; J. Hua,; M. Ikezawa,; R. S. Zeng,; H. B. Li,; Y. Masumoto,; J. L. Zhao, Enhanced luminescence and energy transfer in Mn2+ doped CsPbCl3-xBrx perovskite nanocrystals. Nanoscale 2018, 10, 19435-19442.
[23]
S. H. Zou,; Y. S. Liu,; J. H. Li,; C. P. Liu,; R. Feng,; F. L. Jiang,; Y. X. Li,; J. Z. Song,; H. B. Zeng,; M. C. Hong, et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 2017, 139, 11443-11450.
[24]
L. Chu,; W. Ahmad,; W. Liu,; J. Yang,; R. Zhang,; Y. Sun,; J. P. Yang,; X. A. Li, Lead-free halide double perovskite materials: A new superstar toward green and stable optoelectronic applications. Nano-Micro Lett. 2019, 11, 16.
[25]
X. G. Zhao,; D. W. Yang,; J. C. Ren,; Y. H. Sun,; Z. W. Xiao,; L. J. Zhang, Rational design of halide double perovskites for optoelectronic applications. Joule 2018, 2, 1662-1673.
[26]
S. Khalfin,; Y. Bekenstein, Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability. Nanoscale 2019, 11, 8665-8679.
[27]
F. Locardi,; E. Sartori,; J. Buha,; J. Zito,; M. Prato,; V. Pinchetti,; M. L. Zaffalon,; M. Ferretti,; S. Brovelli,; I. Infante, et al. Emissive Bi-doped double perovskite Cs2Ag1-xNaxInCl6 nanocrystals. ACS Energy Lett. 2019, 4, 1976-1982.
[28]
J. J. Luo,; X. M. Wang,; S. R. Li,; J. Liu,; Y. M. Guo,; G. D. Niu,; L. H. Yao,; Y. H. Fu,; L. Gao,; Q. S. Dong, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 2018, 563, 541-545.
[29]
B. Ke,; R. S. Zeng,; Z. Zhao,; Q. L. Wei,; X. G. Xue,; K. Bai,; C. X. Cai,; W. C. Zhou,; Z. G. Xia,; B. S. Zou, Homo- and heterovalent doping-mediated self-trapped exciton emission and energy transfer in Mn-doped Cs2Na1-xAgxBiCl6 double perovskites. J. Phys. Chem. Lett. 2020, 11, 340-348.
[30]
A. E. Maughan,; A. M. Ganose,; D. O. Scanlon,; J. R. Neilson, Perspectives and design principles of vacancy-ordered double perovskite halide semiconductors. Chem. Mater. 2019, 31, 1184-1195.
[31]
L. Zhou,; J. F. Liao,; Z. G. Huang,; X. D. Wang,; Y. F. Xu,; H. Y. Chen,; D. B. Kuang,; C. Y. Su, All-inorganic lead-free Cs2PdX6 (X = Br, I) perovskite nanocrystals with single unit cell thickness and high stability. ACS Energy Lett. 2018, 3, 2613-2619.
[32]
M. Chen,; M. G. Ju,; A. D. Carl,; Y. X. Zong,; R. L. Grimm,; J. J. Gu,; X. C. Zeng,; Y. Y. Zhou,; N. P. Padture, Cesium titanium(IV) bromide thin films based stable lead-free perovskite solar cells. Joule 2018, 2, 558-570.
[33]
J. Euvrard,; X. M. Wang,; T. Y. Li,; Y. F. Yan,; D. B. Mitzi, Is Cs2TiBr6 a promising Pb-free perovskite for solar energy applications? J. Mater. Chem. A 2020, 8, 4049-4054.
[34]
Z. F. Tan,; J. H. Li,; C. Zhang,; Z. Li,; Q. S. Hu,; Z. W. Xiao,; T. Kamiya,; H. Hosono,; G. D. Niu,; E. Lifshitz, et al. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: Photoluminescence induced by impurity doping. Adv. Funct. Mater. 2018, 28, 1801131.
[35]
Y. Y. Jing,; Y. Liu,; J. Zhao,; Z. G. Xia, Sb3+ doping-Induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals. J. Phys. Chem. Lett. 2019, 10, 7439-7444.
[36]
A. E. Maughan,; A. M. Ganose,; M. M. Bordelon,; E. M. Miller,; D. O. Scanlon,; J. R. Neilson, Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. J. Am. Chem. Soc. 2016, 138, 8453-8464.
[37]
Z. F. Tan,; Y. M. Chu,; J. X. Chen,; J. H. Li,; G. Q. Ji,; G. D. Niu,; L. Gao,; Z. W. Xiao,; J. Tang, Lead-free perovskite variant solid solutions Cs2Sn1-xTexCl6: Bright luminescence and high anti-water stability. Adv. Mater. 2020, 32, 2002443.
[38]
C. G. Van de Walle,; J. Neugebauer, First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 2004, 95, 3851-3879.
[39]
Q. L. Wei,; C. Q. Lin,; Y. F. Li,; X. Y. Zhang,; Q. Y. Zhang,; Q. Shen,; Y. C. Cheng,; W. Huang, Physics of intrinsic point defects in bismuth oxychalcogenides: A first-principles investigation. J. Appl. Phys. 2018, 124, 055701.
[40]
J. H. Li,; Z. F. Tan,; M. C. Hu,; C. Chen,; J. J. Luo,; S. R. Li,; L. Gao,; Z. W. Xiao,; G. D. Niu,; J. Tang, Antimony doped Cs2SnCl6 with bright and stable emission. Front. Optoelectron. 2019, 12, 352-364.
[41]
T. V. Sedakova,; A. G. Mirochnik, Luminescent and thermochromic properties of tellurium(IV) halide complexes with cesium. Opt. Spectrosc 2016, 120, 268-273.
[42]
P. J. H. Drummen,; H. Donker,; W. M. A. Smit,; G. Blasse, Jahn-Teller distortion in the excited state of tellurium(IV) in Cs2MCl6 (M = Zr, Sn). Chem. Phys. Lett. 1988, 144, 460-462.
[43]
S. R. Li,; J. J. Luo,; J. Liu,; J. Tang, Self-trapped excitons in all-inorganic halide perovskites: Fundamentals, status, and potential applications. J. Phys. Chem. Lett. 2019, 10, 1999-2007.
[44]
S. Kahmann,; E. K. Tekelenburg,; H. Duim,; M. E. Kamminga,; M. A. Loi, Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden-Popper perovskites. Nat. Commun. 2020, 11, 2344.
[45]
M. D. Smith,; B. A. Connor,; H. I. Karunadasa, Tuning the luminescence of layered halide perovskites. Chem. Rev. 2019, 119, 3104-3139.
[46]
G. Blasse,; G. J. Dirksen,; W. Abriel, The influence of distortion of the Te(IV) coordination octahedron on its luminescence. Chem. Phys. Lett. 1987, 136, 460-464.
[47]
B. T. Diroll,; H. Zhou,; R. D. Schaller, Low-temperature absorption, photoluminescence, and lifetime of CsPbX3 (X = Cl, Br, I) nanocrystals. Adv. Funct. Mater. 2018, 28, 1800945.
[48]
Z. Zhao,; M. Y. Zhong,; W. C. Zhou,; Y. H. Peng,; Y. L. Yin,; D. S. Tang,; B. S. Zou, Simultaneous triplet exciton-phonon and exciton-photon photoluminescence in the individual weak confinement CsPbBr3 micro/nanowires. J. Phys. Chem. C 2019, 123, 25349-25358.
[49]
R. S. Zeng,; L. L. Zhang,; Y. Xue,; B. Ke,; Z. Zhao,; D. Huang,; Q. L. Wei,; W. C. Zhou,; B. S. Zou, Highly efficient blue emission from self-trapped excitons in stable Sb3+-doped Cs2NaInCl6 double perovskites. J. Phys. Chem. Lett. 2020, 11, 2053-2061.
[50]
A. Kaltzoglou,; M. Antoniadou,; A. G. Kontos,; C. C. Stoumpos,; D. Perganti,; E. Siranidi,; V. Raptis,; K. Trohidou,; V. Psycharis,; M. G. Kanatzidis, et al. Optical-vibrational properties of the Cs2SnX6 (X = Cl, Br, I) defect perovskites and hole-transport efficiency in dye-sensitized solar cells. J. Phys. Chem. C 2016, 120, 11777-11785.
[51]
Y. Fujimoto,; K. Saeki,; D. Nakauchi,; H. Fukada,; T. Yanagida;; H. Kawamoto,; M. Koshimizu,; K. Asai, Photoluminescence, photoacoustic, and scintillation properties of Te4+-doped Cs2HfCl6 crystals. Mater. Res. Bull. 2018, 105, 291-295.
[52]
W. W. Meng,; X. M. Wang,; Z. W. Xiao,; J. B. Wang,; D. B. Mitzi,; Y. F. Yan, Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J. Phys. Chem. Lett. 2017, 8, 2999-3007.
[53]
J. F. Ackerman, Preparation and luminescence of some [K2PtCl6] materials. Mater. Res. Bull. 1984, 19, 783-791.
File
12274_2020_3214_MOESM1_ESM.pdf (5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 September 2020
Revised: 23 October 2020
Accepted: 27 October 2020
Published: 19 November 2020
Issue date: May 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21661010 and 11774134), Guangxi Natural Science Foundation (No. 2017GXNSFGA198005), Natural Science Foundation of Hunan Province (No. 2020JJ4424), Research Foundation of Education Bureau of Hunan Province (No. 18A009). The calculation was supported by the high-performance computing platform of Guangxi University. J. Z., S. C. and B. Z. appreciate the special fund of "Guangxi Bagui Scholars" .

Return