Journal Home > Volume 14 , Issue 5

Despite the high theoretical specific capacity, the main challenges of rechargeable lithium-sulfur (Li-S) batteries, including the unceasing shuttle of soluble lithium polysulfides (LiPSs) and severe Li corrosion, seriously hinder their commercial and practical applications. Herein, a bifunctional polyvinyl alcohol/poly(lithium acrylate) (C-PVA/PAA-Li) composite nanofiber separator is developed to address the main challenges in Li-S batteries by simultaneously allowing rapid lithium ion transport and ionic shielding of polysulfides. The C-PVA/PAA-Li composite nanofiber membrane is prepared via the facile electrospinning strategy, followed by thermal crosslinking and in-situ lithiation processes. Differing from the conventional Celgard-based coating methods accompanied by impaired lithium ion transport efficiency, the C-PVA/PAA-Li composite nanofiber membrane possesses well-developed porous structures and high ionic conductivity, thus synergistically reducing the charge transfer resistance and inhibiting the growth of lithium dendrites. The resulting Li-S batteries exhibit an ultra-low fading rate of 0.08% per cycle after 400 cycles at 0.2 C, and a capacity of 633 mA·h·g-1 at a high current density of 3 C. This study presents an inspiring and promising strategy to fabricate emerging dual-functional separators, which paves the pathway for the practical implementation of ultra-stable and reliable Li-S battery systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A dual-functional poly(vinyl alcohol)/poly(lithium acrylate) composite nanofiber separator for ionic shielding of polysulfides enables high-rate and ultra-stable Li-S batteries

Show Author's information Chunyang Zhou1Jing Wang4Xiaobo Zhu1Kai Chen1Yue Ouyang1Yue Wu3Yue-E Miao1( )Tianxi Liu1,2
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China
Bristol Composites Institute (ACCIS), Department of Aerospace Engineering, Queen’s Building, University of Bristol, University Walk, Bristol, BS8 1TR, UK

Abstract

Despite the high theoretical specific capacity, the main challenges of rechargeable lithium-sulfur (Li-S) batteries, including the unceasing shuttle of soluble lithium polysulfides (LiPSs) and severe Li corrosion, seriously hinder their commercial and practical applications. Herein, a bifunctional polyvinyl alcohol/poly(lithium acrylate) (C-PVA/PAA-Li) composite nanofiber separator is developed to address the main challenges in Li-S batteries by simultaneously allowing rapid lithium ion transport and ionic shielding of polysulfides. The C-PVA/PAA-Li composite nanofiber membrane is prepared via the facile electrospinning strategy, followed by thermal crosslinking and in-situ lithiation processes. Differing from the conventional Celgard-based coating methods accompanied by impaired lithium ion transport efficiency, the C-PVA/PAA-Li composite nanofiber membrane possesses well-developed porous structures and high ionic conductivity, thus synergistically reducing the charge transfer resistance and inhibiting the growth of lithium dendrites. The resulting Li-S batteries exhibit an ultra-low fading rate of 0.08% per cycle after 400 cycles at 0.2 C, and a capacity of 633 mA·h·g-1 at a high current density of 3 C. This study presents an inspiring and promising strategy to fabricate emerging dual-functional separators, which paves the pathway for the practical implementation of ultra-stable and reliable Li-S battery systems.

Keywords: electrospinning, lithium-sulfur battery, nanofiber separator, ionic shielding, dendrite-free

References(51)

[1]
X. Liang,; C. Hart,; Q. Pang,; A. Garsuch,; T. Weiss,; L. F. Nazar, A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.
[2]
Y. F. Ye,; M. K. Song,; Y. Xu,; K. Q. Nie,; Y. S. Liu,; J. Feng,; X. H. Sun,; E. J. Cairns,; Y. G. Zhang,; J. H. Guo, Lithium nitrate: A double-edged sword in the rechargeable lithium-sulfur cell. Energy Storage Mater. 2019, 16, 498-504.
[3]
F. Pei,; L. L. Lin,; A. Fu,; S. G. Mo,; D. H. Ou,; X. L. Fang,; N. F. Zheng, A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries. Joule 2018, 2, 323-336.
[4]
C. Y. Yan,; P. Zhu,; H. Jia,; J. D. Zhu,; R. K. Selvan,; Y. Li,; X. Dong,; Z. Du,; I. Angunawela,; N. Q. Wu, et al. High-performance 3-D fiber network composite electrolyte enabled with Li-ion conducting nanofibers and amorphous PEO-based cross-linked polymer for ambient all-solid-state lithium-metal batteries. Adv. Fiber Mater. 2019, 1, 46-60.
[5]
J. D. Zhu,; P. Zhu,; C. Y. Yan,; X. Dong,; X. W. Zhang, Recent progress in polymer materials for advanced lithium-sulfur batteries. Prog. Polym. Sci. 2019, 90, 118-163.
[6]
D. W. Su,; D. Zhou,; C. Y. Wang,; G. X. Wang, Toward high performance lithium-sulfur batteries based on Li2S cathodes and beyond: Status, challenges, and perspectives. Adv. Funct. Mater. 2018, 28, 1800154.
[7]
H. J. Peng,; J. Q. Huang,; X. B. Cheng,; Q. Zhang, Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.
[8]
T. Z. Hou,; W. T. Xu,; X. Chen,; H. J. Peng,; J. Q. Huang,; Q. Zhang, Lithium bond chemistry in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2017, 56, 8178-8182.
[9]
Z. Li,; Y. Han,; J. H. Wei,; W. Q. Wang,; T. T. Cao,; S. M. Xu,; Z. H. Xu, Suppressing shuttle effect using Janus cation exchange membrane for high-performance lithium-sulfur battery separator. ACS Appl. Mater. Interfaces 2017, 9, 44776-44781.
[10]
C. C. Su,; M. N. He,; R. Amine,; Z. H. Chen,; K. Amine, The relationship between the relative solvating power of electrolytes and shuttling effect of lithium polysulfides in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 12033-12036.
[11]
Y. Z. Song,; W. L. Cai,; L. Kong,; J. S. Cai,; Q. Zhang,; J. Y. Sun, Rationalizing electrocatalysis of Li-S chemistry by mediator design: Progress and prospects. Adv. Energy Mater. 2020, 10, 1901075.
[12]
N. X. Shi,; B. J. Xi,; Z. Y. Feng,; F. F. Wu,; D. H. Wei,; J. Liu,; S. L. Xiong, Insight into different-microstructured ZnO/graphene-functionalized separators affecting the performance of lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 4009-4018.
[13]
J. Y. Cui,; Z. H. Li,; J. B. Li,; S. Li,; J. Liu,; M. F. Shao,; M. Wei, An atomic-confined-space separator for high performance lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 1896-1903.
[14]
T. Y. Lei,; W. Chen,; W. Q. Lv,; J. W. Huang,; J. Zhu,; J. W. Chu,; C. Y. Yan,; C. Y. Wu,; Y. C. Yan,; W. D. He, et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018, 2, 2091-2104.
[15]
C. B. Jin,; W. K. Zhang,; Z. Z. Zhuang,; J. G. Wang,; H. Huang,; Y. P. Gan,; Y. Xia,; C. Liang,; J. Zhang,; X. Y. Tao, Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 632-640.
[16]
G. R. Li,; S. Wang,; Y. N. Zhang,; M. Li,; Z. W. Chen,; J. Lu, Revisiting the role of polysulfides in lithium-sulfur batteries. Adv. Mater. 2018, 30, 1705590.
[17]
T. H. Zhou,; W. Lv,; J. Li,; G. M. Zhou,; Y. Zhao,; S. X. Fan,; B. L. Liu,; B. H. Li,; F. Y. Kang,; Q. H. Yang, Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694-1703.
[18]
J. J. Yu,; S. W. Liu,; G. G. Duan,; H. Fang,; H. Q. Hou, Dense and thin coating of gel polymer electrolyte on sulfur cathode toward high performance Li-sulfur battery. Compos. Commun. 2020, 19, 239-245.
[19]
W. Chen,; T. Y. Lei,; W. Q. Lv,; Y. Hu,; Y. C. Yan,; Y. Jiao,; W. D. He,; Z. H. Li,; C. L. Yan,; J. Xiong, Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium-sulfur battery. Adv. Mater. 2018, 30, 1804084.
[20]
M. Rana,; M. Li,; X. Huang,; B. Luo,; I. Gentle,; R. Knibbe, Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J. Mater. Chem. A 2019, 7, 6596-6615.
[21]
X. B. Zhu,; Y. Ouyang,; J. W. Chen,; X. G. Zhu,; X. Luo,; F. L. Lai,; H. Zhang,; Y. E. Miao,; T. X. Liu, In situ extracted poly(acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 3253-3263.
[22]
R. P. Fang,; S. Y. Zhao,; Z. H. Sun,; D. W. Wang,; H. M. Cheng,; F. Li, More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.
[23]
X. W. Fu,; Y. Wang,; L. Scudiero,; W. H. Zhong, A polymeric nanocomposite interlayer as ion-transport-regulator for trapping polysulfides and stabilizing lithium metal. Energy Storage Mater. 2018, 15, 447-457.
[24]
F. Wu,; S. Y. Zhao,; L. Chen,; Y. Lu,; Y. F. Su,; Y. N. Jia,; L. Y. Bao,; J. Wang,; S. Chen,; R. J. Chen, Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries. Energy Storage Mater. 2018, 14, 383-391.
[25]
W. Wang,; C. Liao,; K. M. Liew,; Z. H. Chen,; L. Song,; Y. C. Kan,; Y. Hu, A 3D flexible and robust HAPs/PVA separator prepared by a freezing-drying method for safe lithium metal batteries. J. Mater. Chem. A 2019, 7, 6859-6868.
[26]
X. B. Cheng,; H. J. Peng,; J. Q. Huang,; F. Wei,; Q. Zhang, Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. Small 2014, 10, 4257-4263.
[27]
J. J. Song,; C. Y. Zhang,; X. Guo,; J. Q. Zhang,; L. Q. Luo,; H. Liu,; F. Y. Wang,; G. X. Wang, Entrapping polysulfides by using ultrathin hollow carbon sphere-functionalized separators in high-rate lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 16610-16616.
[28]
L. L. Zhang,; X. Chen,; F. Wan,; Z. Q. Niu,; Y. J. Wang,; Q. Zhang,; J. Chen, Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries. ACS Nano 2018, 12, 9578-9586.
[29]
J. H. Li,; W. Wei,; L. J. Meng, Liquid-phase exfoliated-graphene-supporting nanostructural sulfur as high-performance lithium-sulfur batteries cathode. Compos. Commun. 2019, 15, 149-154.
[30]
H. F. Shi,; W. Lv,; C. Zhang,; D. W. Wang,; G. W. Ling,; Y. B. He,; F. Y. Kang,; Q. H. Yang, Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: Confining, trapping, blocking, and breaking up. Adv. Funct. Mater. 2018, 28, 1800508.
[31]
W. Z. Tian,; B. J. Xi,; Y. Gu,; Q. Fu,; Z. Y. Feng,; J. K. Feng,; S. L. Xiong, Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673-2682.
[32]
X. T. Zuo,; M. M. Zhen,; C. Wang, Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Res. 2019, 12, 829-836.
[33]
Z. A. Ghazi,; L. Y. Zhu,; H. Wang,; A. Naeem,; A. M. Khattak,; B. Liang,; N. A. Khan,; Z. X. Wei,; L. S. Li,; Z. Y. Tang, Efficient polysulfide chemisorption in covalent organic frameworks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2016, 6, 1601250.
[34]
B. Liu,; S. Z. Huang,; D. Z. Kong,; J. P. Hu,; H. Y. Yang, Bifunctional NiCo2S4 catalysts supported on a carbon textile interlayer for ultra-stable Li-S battery. J. Mater. Chem. A 2019, 7, 7604-7613.
[35]
X. Luo,; X. B. Lu,; G. Y. Zhou,; X. Y. Zhao,; Y. Ouyang,; X. B. Zhu,; Y. E. Miao,; T. X. Liu, Ion-selective polyamide acid nanofiber separators for high-rate and stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 42198-42206.
[36]
J. Zhou,; Y. F. Wang,; C. Zhang, Synthesis and electrochemical performance of core-shell NiCo2S4@nitrogen, sulfur dual-doped carbon composites via confined sulfidation strategy in a polydopamine nanoreactor. Compos. Commun. 2019, 12, 74-79.
[37]
Y. Fan,; Z. Yang,; W. X. Hua,; D. Liu,; T. Tao,; M. Rahman,; W. W. Lei,; S. M. Huang,; Y. Chen, Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602380.
[38]
Z. Wang,; M. Feng,; H. Sun,; G. R. Li,; Q. Fu,; H. B. Li,; J. Liu,; L. Q. Sun,; A. Mauger,; C. M. Julien, et al. Constructing metal-free and cost-effective multifunctional separator for high-performance lithium-sulfur batteries. Nano Energy 2019, 59, 390-398.
[39]
Q. Dong,; R. P. Shen,; C. P. Li,; R. Y. Gan,; X. T. Ma,; J. C. Wang,; J. Li,; Z. D. Wei, Construction of soft base tongs on separator to grasp polysulfides from shuttling in lithium-sulfur batteries. Small 2018, 14, 1804277.
[40]
Z. B. Cheng,; H. Pan,; J. Q. Chen,; X. P. Meng,; R. H. Wang, Separator modified by cobalt-embedded carbon nanosheets enabling chemisorption and catalytic effects of polysulfides for high-energy-density lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901609.
[41]
D. S. Kim,; H. B. Park,; J. W. Rhim,; Y. M. Lee, Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J. Membr. Sci. 2004, 240, 37-48.
[42]
Y. S. Zhu,; X. J. Wang,; Y. Y. Hou,; X. W. Gao,; L. L. Liu,; Y. P. Wu,; M. Shimizu, A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries. Electrochim. Acta 2013, 87, 113-118.
[43]
K. Jiang,; S. Gao,; R. X. Wang,; M. Jiang,; J. Han,; T. T. Gu,; M. Y. Liu,; S. J. Cheng,; K. L. Wang, Lithium sulfonate/carboxylate-anchored polyvinyl alcohol separators for lithium sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 18310-18315.
[44]
J. B. Liao,; Z. Liu,; J. L. Wang,; Z. B. Ye, Cost-effective water-soluble poly(vinyl alcohol) as a functional binder for high-sulfur-loading cathodes in lithium-sulfur batteries. ACS Omega 2020, 5, 8272-8282.
[45]
K. A. Hays,; R. E. Ruther,; A. J. Kukay,; P. F. Cao,; T. Saito,; D. L. Wood III,; J. L. Li, What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes? J. Power Sources 2018, 384, 136-144.
[46]
N. W. Li,; Y. Shi,; Y. X. Yin,; X. X. Zeng,; J. Y. Li,; C. J. Li,; L. J. Wan,; R. Wen,; Y. G. Guo, A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem., Int. Ed. 2018, 57, 1505-1509.
[47]
J. H. Dai,; C. Shi,; C. Li,; X. Shen,; L. Q. Peng,; D. Z. Wu,; D. H. Sun,; P. Zhang,; J. B. Zhao, A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine-ceramic composite modification of polyolefin membranes. Energy Environ. Sci. 2016, 9, 3252-3261.
[48]
W. Xiao,; K. Y. Zhang,; J. G. Liu,; C. W. Yan, Preparation of poly(vinyl alcohol)-based separator with pore-forming additive for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 2017, 28, 17516-17525.
[49]
Y. Cao,; C. Liu,; M. D. Wang,; H. Yang,; S. Liu,; H. L. Wang,; Z. X. Yang,; F. S. Pan,; Z. Y. Jiang,; J. Sun, Lithiation of covalent organic framework nanosheets facilitating lithium-ion transport in lithium-sulfur batteries. Energy Storage Mater. 2020, 29, 207-215.
[50]
J. X. Song,; M. J. Zhou,; R. Yi,; T. Xu,; M. L. Gordin,; D. H. Tang,; Z. X. Yu,; M. Regula,; D. H. Wang, Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 5904-5910.
[51]
Y. F. Yang,; J. P. Zhang, Highly stable lithium-sulfur batteries based on laponite nanosheet-coated celgard separators. Adv. Energy Mater. 2018, 8, 1801778.
File
12274_2020_3213_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 August 2020
Revised: 06 October 2020
Accepted: 27 October 2020
Published: 04 January 2021
Issue date: May 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (No. 21604010), the Natural Science Foundation of Shanghai (No. 18ZR1401600), "Chenguang Program" supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (No. 16CG39), and Shanghai Scientific and Technological Innovation Project (No. 18JC1410600).

Return