AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Inter-facet composition modulation of III-nitride nanowires over pyramid textured Si substrates by stationary molecular beam epitaxy

Peng Wang1,2( )Hedong Chen1Hao Wang3Dan Wang4Changkun Song1Xingyu Wang1Hongjie Yin1Lujia Rao1Guofu Zhou1,2,5( )Richard Nötzel1,2( )
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
Department of Physics, Xiamen University, Xiamen 361005, China
Analysis & Testing Center, South China Normal University, Guangzhou 510631, China
Academy of Shenzhen Guohua Optoelectronics, Shenzhen 518110, China
Show Author Information

Graphical Abstract

Abstract

InGaN nanowires (NWs) are grown on pyramid textured Si substrates by stationary plasma-assisted molecular beam epitaxy (PA-MBE). The incidence angles of the highly directional source beams vary for different pyramid facets, inducing a distinct inter-facet modulation of the In content of the InGaN NWs, which is verified by spatial element distribution analysis. The resulting multi-wavelength emission is confirmed by photoluminescence (PL) and cathodoluminescence (CL). Pure GaN phase formation dominates on certain facets, which is attributed to extreme local growth conditions, such as low active N flux. On the same facets, InGaN NWs exhibit a morphology change close to the pyramid ridge, indicating inter-facet atom migration. This cross-talk effect due to inter-facet atom migration is verified by a decrease of the inter-facet In content modulation amplitude with shrinking pyramid size. A detailed analysis of the In content variation across individual pyramid facets and element distribution line profiles reveals that the cross-talk effect originates mainly from the inter-facet atom migration over the convex pyramid ridge facet boundaries rather than the concave base line facet boundaries. This is understood by first-principles calculations showing that the pyramid baseline facet boundary acts as an energy barrier for atom migration, which is much higher than that of the ridge facet boundary. The influence of the growth temperature on the inter-facet In content modulation is also presented. This work gives deep insight into the composition modulation for the realization of multi-color light-emitting devices based on the monolithic growth of InGaN NWs on pyramid textured Si substrates.

Electronic Supplementary Material

Download File(s)
12274_2020_3209_MOESM1_ESM.pdf (1.6 MB)

References

[1]
T. Taki,; M. Strassburg, Review—Visible LEDs: More than efficient light. ECS J. Solid State Sci. Technol. 2019, 9, 015017.
[2]
X. Hai,; R. T. Rashid,; S. M. Sadaf,; Z. Mi,; S. Zhao, Effect of low hole mobility on the efficiency droop of AlGaN nanowire deep ultraviolet light emitting diodes. Appl. Phys. Lett. 2019, 114, 101104.
[3]
M. Nami,; A. Rashidi,; M. Monavarian,; S. Mishkat-Ul-Masabih,; A. K. Rishinaramangalam,; S. R. J. Brueck,; D. Feezell, Electrically injected GHz-class GaN/InGaN core-shell nanowire-based μLEDs: Carrier dynamics and nanoscale homogeneity. ACS Photonics 2019, 6, 1618-1625.
[4]
T. Kuykendall,; P. Ulrich,; S. Aloni,; P. D. Yang, Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater. 2007, 6, 951-956.
[5]
G. Q. Li,; W. L. Wang,; W. J. Yang,; Y. H. Lin,; H. Y. Wang,; Z. T. Lin,; S. Z. Zhou, GaN-based light-emitting diodes on various substrates: A critical review. Rep. Prog. Phys. 2016, 79, 056501.
[6]
M. Qi,; G. W. Li,; S. Ganguly,; P. Zhao,; X. D. Yan,; J. Verma,; B. Song,; M. D. Zhu,; K. Nomoto,; H. L. Xing, et al. Strained GaN quantum-well FETs on single crystal bulk AlN substrates. Appl. Phys. Lett. 2017, 110, 063501.
[7]
R. J. Kaplar,; A. A. Allerman,; A. M. Armstrong,; M. H. Crawford,; J. R. Dickerson,; A. J. Fischer,; A. G. Baca,; E. A. Douglas, Review—Ultra-wide-bandgap AlGaN power electronic devices. ECS J. Solid State Sci. Technol. 2017, 6, Q3061-Q3066.
[8]
G. Kibria,; R. M. Qiao,; W. L. Yang,; I. Boukahil,; X. H. Kong,; F. A. Chowdhury,; M. L. Trudeau,; W. Ji,; H. Guo,; F. J. Himpsel, et al. Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting. Adv. Mater. 2016, 28, 8388-8397.
[9]
P. Varadhan,; H. C. Fu,; D. Priante,; J. R. D. Retamal,; C. Zhao,; M. Ebaid,; T. K. Ng,; I. Ajia,; S. Mitra,; I. S. Roqan, et al. Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting. Nano Lett. 2017, 17, 1520-1528.
[10]
N. u. H. Alvi,; P. E. D. Soto Rodriguez,; P. Aseev,; V. J. Gómez,; A. u. H. Alvi,; W. u. Hassan,; M. Willander,; R. Nötzel, InN/InGaN quantum dot photoelectrode: Efficient hydrogen generation by water splitting at zero voltage. Nano Energy 2015, 13, 291-297.
[11]
M. S. Wong,; S. Nakamura,; S. P. DenBaars, Review—progress in high performance III-nitride micro-light-emitting diodes. ECS J. Solid State Sci. Technol. 2020, 9, 015012.
[12]
J. G. Um,; D. Y. Jeong,; Y. Jung,; J. K. Moon,; Y. H. Jung,; S. Kim,; S. H. Kim,; J. S. Lee,; J. Jang, Active-matrix GaN µ-LED display using oxide thin-film transistor backplane and flip chip LED bonding. Adv. Electron. Mater. 2019, 5, 1800617.
[13]
F. W. Gou,; E. L. Hsiang,; G. J. Tan,; Y. F. Lan,; C. Y. Tsai,; S. T. Wu, High performance color-converted micro-LED displays. J. Soc. Inf. Disp. 2019, 27, 199-206.
[14]
D. M. Geum,; S. K. Kim,; C. M. Kang,; S. H. Moon,; J. Kyhm,; J. Han,; D. S. Lee,; S. H. Kim, Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding-interface-engineered vertical stacking and surface passivation. Nanoscale 2019, 11, 23139-23148.
[15]
K. Ding,; V. Avrutin,; N. Izyumskaya,; Ü. Özgür,; H. Morkoç, Micro-LEDs, a manufacturability perspective. Appl. Sci. 2019, 9, 1206.
[16]
Y. H. Ra,; R. J. Wang,; S. Y. Woo,; M. Djavid,; S. Sadaf,; J. Lee,; G. A. Botton,; Z. T. Mi, Full-color single nanowire pixels for projection displays. Nano Lett. 2016, 16, 4608-4615.
[17]
S. Y. Chun,; G. Y. Yoo,; S. Jeong,; S. M. Park,; Y. J. Eo,; W. Kim,; Y. R. Do,; J. K. Song, Dual wavelength lasing of InGaN/GaN axial-heterostructure nanorod lasers. Nanoscale 2019, 11, 14186-14193.
[18]
S. M. Sadaf,; Y. H. Ra,; H. P. T. Nguyen,; M. Djavid,; Z. Mi, Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes. Nano Lett. 2015, 15, 6696-6701.
[19]
M. S. Kang,; C. H. Lee,; J. B. Park,; H. Yoo,; G. C. Yi, Gallium nitride nanostructures for light-emitting diode applications. Nano Energy 2012, 1, 391-400.
[20]
M. L. Lee,; Y. H. Yeh,; S. J. Tu,; P. C. Chen,; W. C. Lai,; J. K. Sheu, White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids. Opt. Express 2015, 23, A401-412.
[21]
S. Sergent,; B. Damilano,; S. Vézian,; S. Chenot,; M. Takiguchi,; T. Tsuchizawa,; H. Taniyama,; M. Notomi, Subliming GaN into ordered nanowire arrays for ultraviolet and visible nanophotonics. ACS Photonics 2019, 6, 3321-3330.
[22]
J. Bai,; Y. F. Cai,; P. Feng,; P. Fletcher,; X. M. Zhao,; C. Q. Zhu,; T. Wang, A direct epitaxial approach to achieving ultrasmall and ultrabright InGaN micro light-emitting diodes (μLEDs). ACS Photonics 2020, 7, 411-415.
[23]
K. Kishino,; N. Sakakibara,; K. Narita,; T. Oto, Two-dimensional multicolor (RGBY) integrated nanocolumn micro-LEDs as a fundamental technology of micro-LED display. Appl. Phys. Express 2020, 13, 014003.
[24]
P. Wang,; H. D. Chen,; H. Wang,; X. Y. Wang,; H. J. Yin,; L. J. Rao,; G. F. Zhou,; R. Nötzel, Multi-wavelength light emission from InGaN nanowires on pyramid-textured Si(100) substrate grown by stationary plasma-assisted molecular beam epitaxy. Nanoscale 2020, 12, 8836-8846.
[25]
P. Aseev,; P. E. D. S. Rodriguez,; V. J. Gómez,; N. u. H. Alvi,; J. M. Mánuel,; F. M. Morales,; J. J. Jiménez,; R. García,; A. Senichev,; C. Lienau, et al. Near-infrared emitting In-rich InGaN layers grown directly on Si: Towards the whole composition range. Appl. Phys. Lett. 2015, 106, 072102.
[26]
X. Y. Wang,; P. Wang,; H. J. Yin,; G. F. Zhou,; R. Nötzel, An InGaN/SiNx/Si uniband diode. J. Electron. Mater. 2020, 49, 3577-3582.
[27]
G. Kresse,; J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[28]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[29]
D. van Treeck,; S. Fernández-Garrido,; L. Geelhaar, Influence of the source arrangement on shell growth around GaN nanowires in molecular beam epitaxy. Phys. Rev. Mater. 2020, 4, 013404.
[30]
N. J. Ku,; J. H. Huang,; C. H. Wang,; H. C. Fang,; C. P. Liu, Crystal face-dependent nanopiezotronics of an obliquely aligned InN nanorod array. Nano Lett. 2012, 12, 562-568.
[31]
M. Morassi,; L. Largeau,; F. Oehler,; H. G. Song,; L. Travers,; F. H. Julien,; J. C. Harmand,; Y. H. Cho,; F. Glas,; M. Tchernycheva, et al. Morphology tailoring and growth mechanism of indium-Rich InGaN/GaN axial nanowire heterostructures by plasma-assisted molecular beam epitaxy. Cryst. Growth Des. 2018, 18, 2545-2554.
[32]
M. Gómez-Gómez,; N. Garro,; J. Segura-Ruiz,; G. Martinez-Criado,; A. Cantarero,; H. T. Mengistu,; A. García-Cristóbal,; S. Murcia-Mascarós,; C. Denker,; J. Malindretos, et al. Spontaneous core-shell elemental distribution in In-rich InxGa1-xN nanowires grown by molecular beam epitaxy. Nanotechnology 2014, 25, 075705.
[33]
K. D. Goodman,; V. V. Protasenko,; J. Verma,; T. H. Kosel,; H. G. Xing,; D. Jena, Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy. J. Appl. Phys. 2011, 109, 084336.
[34]
Z. Z. Xu,; Y. F. Yu,; J. L. Han,; L. Wen,; F. L. Gao,; S. G. Zhang,; G. Q. Li, The mechanism of indium-assisted growth of (In)GaN nanorods: Eliminating nanorod coalescence by indium-enhanced atomic migration. Nanoscale 2017, 9, 16864-16870.
[35]
H. D. Chen,; P. Wang,; H. P. Ye,; H. J. Yin,; L. J. Rao,; D. T. Luo,; X. H. Hou,; G. F. Zhou,; R. Nötzel, Vertically aligned InGaN nanowire arrays on pyramid textured Si (1 0 0): A 3D arrayed light trapping structure for photoelectrocatalytic water splitting. Chem. Eng. J. 2021, 406, 126757.
[36]
S. J. Tsai,; C. Y. Lin,; C. L. Wang,; J. W. Chen,; C. H. Chen,; C. L. Wu, Efficient coupling of lateral force in GaN nanorod piezoelectric nanogenerators by vertically integrated pyramided Si substrate. Nano Energy 2017, 37, 260-267.
[37]
Y. J. Wang,; Y. P. Wu,; K. Sun,; Z. T. Mi, A quadruple-band metal-nitride nanowire artificial photosynthesis system for high efficiency photocatalytic overall solar water splitting. Mater. Horiz. 2019, 6, 1454-1462.
[38]
Y. J. Wang,; S. Vanka,; J. Gim,; Y. P. Wu,; R. L. Fan,; Y. Z. Zhang,; J. W. Shi,; M. R. Shen,; R. Hovden,; Z. T. Mi, An In0.42Ga0.58N tunnel junction nanowire photocathode monolithically integrated on a nonplanar Si wafer. Nano Energy 2019, 57, 405-413.
Nano Research
Pages 1502-1511
Cite this article:
Wang P, Chen H, Wang H, et al. Inter-facet composition modulation of III-nitride nanowires over pyramid textured Si substrates by stationary molecular beam epitaxy. Nano Research, 2021, 14(5): 1502-1511. https://doi.org/10.1007/s12274-020-3209-7
Topics:

1078

Views

2

Crossref

N/A

Web of Science

2

Scopus

1

CSCD

Altmetrics

Received: 27 August 2020
Revised: 05 October 2020
Accepted: 22 October 2020
Published: 03 December 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return