Journal Home > Volume 14 , Issue 5

Luminescent solar concentrators (LSC) absorb large-area solar radiation and guide down-converted emission to solar cells for electricity production. Quantum dots (QDs) have been widely engineered at device and quantum dot levels for LSCs. Here, we demonstrate cascaded energy transfer and exciton recycling at nanoassembly level for LSCs. The graded structure composed of different sized toxic-heavy-metal-free InP/ZnS core/shell QDs incorporated on copper doped InP QDs, facilitating exciton routing toward narrow band gap QDs at a high nonradiative energy transfer efficiency of 66%. At the final stage of non-radiative energy transfer, the photogenerated holes make ultrafast electronic transitions to copper-induced mid-gap states for radiative recombination in the near-infrared. The exciton recycling facilitates a photoluminescence quantum yield increase of 34% and 61% in comparison with semi-graded and ungraded energy profiles, respectively. Thanks to the suppressed reabsorption and enhanced photoluminescence quantum yield, the graded LSC achieved an optical quantum efficiency of 22.2%. Hence, engineering at nanoassembly level combined with nonradiative energy transfer and exciton funneling offer promise for efficient solar energy harvesting.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Exciton recycling via InP quantum dot funnels for luminescent solar concentrators

Show Author's information Houman Bahmani Jalali1,§Sadra Sadeghi2,§Isinsu Baylam3,4Mertcan Han5Cleva W. Ow-Yang6Alphan Sennaroglu3,4Sedat Nizamoglu1,2,5( )
Graduate School of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey
Graduate School of Material Science and Engineering, Koç University, Istanbul 34450, Turkey
Koç University Surface Science and Technology Center (KUYTAM), Koç University, Istanbul 34450, Turkey
Laser Research Laboratory, Koç University, Istanbul 34450, Turkey
Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
Department of Material Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey

Abstract

Luminescent solar concentrators (LSC) absorb large-area solar radiation and guide down-converted emission to solar cells for electricity production. Quantum dots (QDs) have been widely engineered at device and quantum dot levels for LSCs. Here, we demonstrate cascaded energy transfer and exciton recycling at nanoassembly level for LSCs. The graded structure composed of different sized toxic-heavy-metal-free InP/ZnS core/shell QDs incorporated on copper doped InP QDs, facilitating exciton routing toward narrow band gap QDs at a high nonradiative energy transfer efficiency of 66%. At the final stage of non-radiative energy transfer, the photogenerated holes make ultrafast electronic transitions to copper-induced mid-gap states for radiative recombination in the near-infrared. The exciton recycling facilitates a photoluminescence quantum yield increase of 34% and 61% in comparison with semi-graded and ungraded energy profiles, respectively. Thanks to the suppressed reabsorption and enhanced photoluminescence quantum yield, the graded LSC achieved an optical quantum efficiency of 22.2%. Hence, engineering at nanoassembly level combined with nonradiative energy transfer and exciton funneling offer promise for efficient solar energy harvesting.

Keywords: quantum dot, energy transfer, indium phosphide, light harvesting, luminescent solar concentrator, luminescent solar concentrators (LSC)

References(52)

[1]
G. W. Crabtree,; N. S. Lewis, Solar energy conversion. Phys. Today 2007, 60, 37-42.
[2]
A. Goetzberger,; W. Greube, Solar energy conversion with fluorescent collectors. Appl. Phys. 1977, 14, 123-139.
[3]
M. J. Currie,; J. K. Mapel,; T. D. Heidel,; S. Goffri,; M. A. Baldo, High-efficiency organic solar concentrators for photovoltaics. Science 2008, 321, 226-228.
[4]
M. G. Debije,; P. P. C. Verbunt, Thirty years of luminescent solar concentrator research: Solar energy for the built environment. Adv. Energy Mater. 2012, 2, 12-35.
[5]
W. G. J. H. M. Van Sark, Luminescent solar concentrators-a low cost photovoltaics alternative. EPJ Web of Conf. 2012, 33, 02003.
[6]
S. Sadeghi,; R. Melikov,; H. Bahmani Jalali,; O. Karatum,; S. B. Srivastava,; D. Conkar,; E. N. Firat-Karalar,; S. Nizamoglu, Ecofriendly and efficient luminescent solar concentrators based on fluorescent proteins. ACS Appl. Mater. Interfaces 2019, 11, 8710-8716.
[7]
E. Yablonovitch, Thermodynamics of the fluorescent planar concentrator. J. Opt. Soc. Amer. 1980, 70, 1362-1363.
[8]
F. Meinardi,; H. McDaniel,; F. Carulli,; A. Colombo,; K. A. Velizhanin,; N. S. Makarov,; R. Simonutti,; V. I. Klimov,; S. Brovelli, Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotechnol. 2015, 10, 878-885.
[9]
H. B. Li,; K. F. Wu,; J. Lim,; H. J. Song,; V. I. Klimov, Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators. Nat. Energy 2016, 1, 16157.
[10]
V. I. Klimov,; T. A. Baker,; J. Lim,; K. A. Velizhanin,; H. McDaniel, Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots. ACS Photonics 2016, 3, 1138-1148.
[11]
Y. M. You,; X. Tong,; W. H. Wang,; J. C. Sun,; P. Yu,; H. N. Ji,; X. B. Niu,; Z. M. Wang, Eco-friendly colloidal quantum dot-based luminescent solar concentrators. Adv. Sci. 2019, 6, 1801967.
[12]
S. Sadeghi,; H. Bahmani Jalali,; S. B. Srivastava,; R. Melikov,; I. Baylam,; A. Sennaroglu,; S. Nizamoglu, High-performance, large-area, and ecofriendly luminescent solar concentrators using copper-doped InP quantum dots. iScience 2020, 23, 101272.
[13]
Y. X. Li,; P. Miao,; W. Zhou,; X. Gong,; X. J. Zhao, N-doped carbon-dots for luminescent solar concentrators. J. Mater. Chem. A 2017, 5, 21452-21459.
[14]
Z. L. Li,; X. J. Zhao,; C. B. Huang,; X. Gong, Recent advances in green fabrication of luminescent solar concentrators using nontoxic quantum dots as fluorophores. J. Mater. Chem. C 2019, 7, 12373-12387.
[15]
H. G. Zhao,; Y. F. Zhou,; D. Benetti,; D. L. Ma,; F. Rosei, Perovskite quantum dots integrated in large-area luminescent solar concentrators. Nano Energy 2017, 37, 214-223.
[16]
S. Sadeghi,; H. Bahmani Jalali,; R. Melikov,; B. G. Kumar,; M. M. Aria,; C. W. Ow-Yang,; S. Nizamoglu, Stokes-shift-engineered indium phosphide quantum dots for efficient luminescent solar concentrators. ACS Appl. Mater. Interfaces 2018, 10, 12975-12982.
[17]
F. Meinardi,; A. Colombo,; K. A. Velizhanin,; R. Simonutti,; M. Lorenzon,; L. Beverina,; R. Viswanatha,; V. I. Klimov,; S. Brovelli, Large-area luminescent solar concentrators based on ‘stokes-shift-engineered’ nanocrystals in a mass-polymerized pmma matrix. Nat. Photonics 2014, 8, 392-399.
[18]
O. Karatum,; H. B. Jalali,; S. Sadeghi,; R. Melikov,; S. B. Srivastava,; S. Nizamoglu, Light-emitting devices based on type-II InP/ZnO quantum dots. ACS Photonics 2019, 6, 939-946.
[19]
M. Y. Wei,; F. P. G. De Arquer,; G. Walters,; Z. Y. Yang,; L. N. Quan,; Y. Kim,; R. Sabatini,; R. Quintero-Bermudez,; L. Gao,; J. Z. Fan, et al. Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators. Nat Energy 2019, 4, 197-205.
[20]
Z. L. Li,; A. Johnston,; M. Y. Wei,; M. I. Saidaminov,; J. M. De Pina,; X. P. Zheng,; J. K. Liu,; Y. Liu,; O. M. Bakr,; E. H. Sargent, Solvent-solute coordination engineering for efficient perovskite luminescent solar concentrators. Joule 2020, 4, 634-643.
[21]
Z. Wang,; W. Yang,; Y. Wang, Self-trapped exciton and large stokes shift in pristine and carbon-coated silicon carbide quantum dots. J. Phys. Chem. C 2017, 121, 20031-20038.
[22]
R. E. Bailey,; S. M. Nie, Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 2003, 125, 7100-7106.
[23]
M. Sharma,; K. Gungor,; A. Yeltik,; M. Olutas,; B. Guzelturk,; Y. Kelestemur,; T. Erdem,; S. Delikanli,; J. R. McBride,; H. V. Demir, Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators. Adv. Mater. 2017, 29, 1700821.
[24]
J. D. Bryan,; D. R. Gamelin, Doped semiconductor nanocrystals: Synthesis, characterization, physical properties, and applications. In Progress in Inorganic Chemistry. K. D. Karlin,, Ed.; John Wiley & Sons: New York, 2005; pp 47-126.
DOI
[25]
R. Viswanatha,; S. Brovelli,; A. Pandey,; S. A. Crooker,; V. I. Klimov, Copper-doped inverted core/shell nanocrystals with “permanent” optically active holes. Nano Lett. 2011, 11, 4753-4758.
[26]
K. F. Wu,; H. B. Li,; V. I. Klimov, Tandem luminescent solar concentrators based on engineered quantum dots. Nat. Photonics 2018, 12, 105-110.
[27]
W. W. Ma,; W. J. Li,; R. Y. Liu,; M. Y. Cao,; X. J. Zhao,; X. Gong, Carbon dots and AIE molecules for highly efficient tandem luminescent solar concentrators. Chem. Commun. 2019, 55, 7486-7489.
[28]
H. Bahmani Jalali,; O. Karatum,; R. Melikov,; U. M. Dikbas,; S. Sadeghi,; E. Yildiz,; I. B. Dogru,; G. O. Eren,; C. Ergun,; A. Sahin, et al. Biocompatible quantum funnels for neural photostimulation. Nano Lett. 2019, 19, 5975-5981.
[29]
H. Bahmani Jalali,; M. M. Aria,; U. M. Dikbas,; S. Sadeghi,; B. G. Kumar,; M. Sahin,; I. H. Kavakli,; C. W. Ow-Yang,; S. Nizamoglu, Effective neural photostimulation using indium-based type-II quantum dots. ACS Nano 2018, 12, 8104-8114.
[30]
H. Bahmani Jalali,; R. Melikov,; S. Sadeghi,; S. Nizamoglu, Excitonic energy transfer within InP/ZnS quantum dot Langmuir-Blodgett assemblies. J. Phys. Chem. C 2018, 122, 11616-11622.
[31]
B. G. Kumar,; S. Sadeghi,; R. Melikov,; M. M. Aria,; H. B. Jalali,; C. W. Ow-Yang; S. Nizamoglu Structural control of InP/ZnS core/shell quantum dots enables high-quality white leds. Nanotechnology 2018, 29, 345605.
[32]
S. Xu,; J. Ziegler,; T. Nann, Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J. Mater. Chem. 2008, 18, 2653-2656.
[33]
C. G. Dos Remedios,; P. D. J. Moens, Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins: Dispelling the problem of the unknown orientation factor. J. Struct. Biol. 1995, 115, 175-185.
[34]
M. Achermann,; M. A. Petruska,; S. A. Crooker,; V. I. Klimov, Picosecond energy transfer in quantum dot Langmuir-Blodgett nanoassemblies. J. Phys. Chem. B 2003, 107, 13782-13787.
[35]
H. Bahmani Jalali,; S. Sadeghi,; M. Sahin,; H. Ozturk,; C. W. Ow-Yang,; S. Nizamoglu, Colloidal aluminum antimonide quantum dots. Chem. Mater. 2019, 31, 4743-4747.
[36]
R. G. Xie,; X. G. Peng, Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable nir emitters. J. Am. Chem. Soc. 2009, 131, 10645-10651.
[37]
K. F. Wu,; H. M. Zhu,; Z. Liu,; W. Rodríguez-Córdoba,; T. Q. Lian, Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 10337-10340.
[38]
A. Dutta,; R. Bera,; A. Ghosh,; A. Patra, Ultrafast carrier dynamics of photo-induced Cu-doped CdSe nanocrystals. J. Phys. Chem. C 2018, 122, 16992-17000.
[39]
P. Peng,; B. Sadtler,; A. P. Alivisatos,; R. J. Saykally, Exciton dynamics in CdS-Ag2S nanorods with tunable composition probed by ultrafast transient absorption spectroscopy. J. Phys. Chem. C 2010, 114, 5879-5885.
[40]
I. J. Kramer,; L. Levina,; R. Debnath,; D. Zhitomirsky,; E. H. Sargent, Solar cells using quantum funnels. Nano Lett. 2011, 11, 3701-3706.
[41]
E. J. D. Klem,; D. D. MacNeil,; P. W. Cyr,; L. Levina,; E. H. Sargent, Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution. Appl. Phys. Lett. 2007, 90, 183113.
[42]
J. M. Luther,; M. Law,; M. C. Beard,; Q. Song,; M. O. Reese,; R. J. Ellingson,; A. J. Nozik, Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 2008, 8, 3488-3492.
[43]
A. Ruland,; C. Schulz-Drost,; V. Sgobba,; D. M. Guldi, Enhancing photocurrent efficiencies by resonance energy transfer in CdTe quantum dot multilayers: Towards rainbow solar cells. Adv. Mater. 2011, 23, 4573-4577.
[44]
H. J. Lv,; C. C. Wang,; G. C. Li,; R. Burke,; T. D. Krauss,; Y. L. Gao,; R. Eisenberg, Semiconductor quantum dot-sensitized rainbow photocathode for effective photoelectrochemical hydrogen generation. Proc. Natl. Acad. Sci. USA 2017, 114, 11297-11302.
[45]
J. Ministro, A study on the synthesis and the optical properties of InP-based quantum dots. Master Degree Thesis, University of Ghent, Belgium, 2014.
[46]
T. A. Klar,; T. Franzl,; A. L. Rogach,; J. Feldmann, Super-efficient exciton funneling in layer-by-layer semiconductor nanocrystal structures. Adv. Mater. 2005, 17, 769-773.
[47]
T. Franzl,; T. A. Klar,; S. Schietinger,; A. L. Rogach,; J. Feldmann, Exciton recycling in graded gap nanocrystal structures. Nano Lett. 2004, 4, 1599-1603.
[48]
Y. P. Rakovich,; A. A. Gladyshchuk,; K. I. Rusakov,; S. A. Filonovich,; M. J. M. Gomes,; D. V. Talapin,; A. L. Rogach,; A. Euchmüller, Anti-stokes luminescence of cadmium telluride nanocrystals. J Appl Spectroscopy 2002, 69, 444-449.
[49]
X. Y. Wang,; W. W. Yu,; J. Y. Zhang,; J. Aldana,; X. G. Peng,; M. Xiao, Photoluminescence upconversion in colloidal CdTe quantum dots. Phys. Rev. B 2003, 68, 125318.
[50]
A. L. Rogach,; T. A. Klar,; J. M. Lupton,; A. Meijerink,; J. Feldmann, Energy transfer with semiconductor nanocrystals. J. Mater. Chem. 2009, 19, 1208-1221.
[51]
T. Förster, Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 1948, 437, 55-75.
[52]
K. Trofymchuk,; A. Reisch,; P. Didier,; F. Fras,; P. Gilliot,; Y. Mely,; A. S. Klymchenko, Giant light-harvesting nanoantenna for single-molecule detection in ambient light. Nat. Photonics 2017, 11, 657-663.
File
12274_2020_3207_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 August 2020
Revised: 20 October 2020
Accepted: 22 October 2020
Published: 19 November 2020
Issue date: May 2021

Copyright

© The Author(s) 2020

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 Research and Innovation Programme (grant agreement no. 639846).

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return