AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Probing reaction pathways for H2O-mediated HCHO photooxidation at room temperature

Weiwei Shao1,2,§Xiaodong Li1,2,§Xiaolong Zu1,2Liang Liang1,2Yang Pan1,2Junfa Zhu1,2Chengming Wang1,2Yongfu Sun1,2( )Yi Xie1,2( )
Hefei National Laboratory for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, Hefei Science Center of CAS, University of Science and Technology of China, Hefei 230026, China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
Show Author Information

Graphical Abstract

Abstract

Photooxidation provides a promising strategy for removing the dominant indoor pollutant of HCHO, while the underlying photooxidation mechanism is still unclear, especially the exact role of H2O molecules. Herein, we utilize in-situ spectral techniques to unveil the H2O-mediated HCHO photooxidation mechanism. As an example, the synthetic defective Bi2WO6 ultrathin sheets realize high-rate HCHO photooxidation with the assistance of H2O at room temperature. In-situ electron paramagnetic resonance spectroscopy demonstrates the existence of •OH radicals, possibly stemmed from H2O oxidation by the photoexcited holes. Synchrotron-radiation vacuum ultraviolet photoionization mass spectroscopy and H218O isotope-labeling experiment directly evidence the formed •OH radicals as the source of oxygen atoms, trigger HCHO photooxidation to produce CO2, while in-situ Fourier transform infrared spectroscopy discloses the HCOO* radical is the main photooxidation intermediate. Density-functional-theory calculations further reveal the •OH formation process is the rate-limiting step, strongly verifying the critical role of H2O in promoting HCHO photooxidation. This work first clearly uncovers the H2O-mediated HCHO photooxidation mechanism, holding promise for high-efficiency indoor HCHO removal at ambient conditions.

Electronic Supplementary Material

Download File(s)
12274_2020_3205_MOESM1_ESM.pdf (3.2 MB)

References

[1]
T. Salthammer,; S. Mentese,; R. Marutzky, Formaldehyde in the indoor environment. Chem. Rev. 2010, 110, 2536-2572.
[2]
C. J. Jiang,; D. D. Li,; P. Y. Zhang,; J. G. Li,; J. Wang,; J. G. Yu, Formaldehyde and volatile organic compound (VOC) emissions from particleboard: Identification of odorous compounds and effects of heat treatment. Build. Environ. 2017, 117, 118-126.
[3]
J. J. Collins,; R. Ness,; R. W. Tyl,; N. Krivanek,; N. A. Esmen,; T. A. Hall, A review of adverse pregnancy outcomes and formaldehyde exposure in human and animal studies. Regul. Toxicol. Pharmacol. 2001, 34, 17-34.
[4]
B. B. Chen,; C. Shi,; M. Crocker,; Y. Wang,; A. M. Zhu, Catalytic removal of formaldehyde at room temperature over supported gold catalysts. Appl. Catal. B: Environ. 2013, 132-133, 245-255.
[5]
C. B. Xu,; W. S. Yang,; Q. Guo,; D. X. Dai,; T. K. Minton,; X. M. Yang, Photoinduced decomposition of formaldehyde on a TiO2(110) surface, assisted by bridge-bonded oxygen atoms. J. Phys. Chem. Lett. 2013, 4, 2668-2673.
[6]
L. H. Nie,; J. G. Yu,; M. Jaroniec,; F. F. Tao, Room-temperature catalytic oxidation of formaldehyde on catalysts. Catal. Sci. Technol. 2016, 6, 3649-3669.
[7]
X. J. Chen,; Y. Xu,; X. G. Ma,; Y. F. Zhu, Large dipole moment induced efficient bismuth chromate photocatalysts for wide-spectrum driven water oxidation and complete mineralization of pollutants. Natl. Sci. Rev. 2020, 7, 652-659.
[8]
X. J. Tong,; X. Cao,; T. Han,; W. C. Cheong,; R. Lin,; Z. Chen,; D. S. Wang,; C. Chen,; Q. Peng,; Y. D. Li, Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Res. 2019, 12, 1625-1630.
[9]
T. Noguchi,; A. Fujishima,; P. Sawunyama,; K. Hashimoto, Photocatalytic degradation of gaseous formaldehyde using TiO2 film. Environ. Sci. Technol. 1998, 32, 3831-3833.
[10]
J. L. Shie,; C. H. Lee,; C. S. Chiou,; C. T. Chang,; C. C. Chang,; C. Y. Chang, Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst. J. Hazard. Mater. 2008, 155, 164-172.
[11]
N. H. An,; Q. S. Yu,; G. Liu,; S. Y. Li,; M. J. Jia,; W. X. Zhang, Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method. J. Hazard. Mater. 2011, 186, 1392-1397.
[12]
H. B. Huang,; D. Y. C. Leung, Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature. J. Catal. 2011, 280, 60-67.
[13]
F. Mushtaq,; X. Z. Chen,; H. Torlakcik,; B. J. Nelson,; S. Pané, Enhanced catalytic degradation of organic pollutants by multi-stimuli activated multiferroic nanoarchitectures. Nano Res. 2020, 13, 2183-2191.
[14]
X. D. Li,; Y. F. Sun,; J. Q. Xu,; Y. J. Shao,; J. Wu,; X. L. Xu,; Y. Pan,; H. X. Ju,; J. F. Zhu,; Y. Xie, Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690-699.
[15]
L. Liang,; X. D. Li,; Y. F. Sun,; Y. L. Tan,; X. C. Jiao,; H. X. Ju,; Z. M. Qi,; J. F. Zhu,; Y. Xie, Infrared light-driven CO2 overall splitting at room temperature. Joule 2018, 2, 1004-1016.
[16]
J. Li,; J. H. Cai,; T. Yuan,; H. J. Guo,; F. Qi, A thermal decomposition study of polymers by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 1269-1274.
[17]
Y. G. Zhou,; Y. F. Zhang,; M. S. Lin,; J. L. Long,; Z. Z. Zhang,; H. X. Lin,; J. C. S. Wu,; X. X. Wang, Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun. 2015, 6, 8340.
[18]
M. Cohn,; H. C. Urey, Oxygen exchange reactions of organic compounds and water. J. Am. Chem. Soc. 1938, 60, 679-687.
[19]
N. P. Levitt,; C. S. Romanek, An “On-Line” method for oxygen isotope exchange between gas-phase CO2 and water. Aquat. Geochem. 2016, 22, 253-269.
[20]
G. Kresse,; J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. mater. sci. 1996, 6, 15-50.
[21]
Y. Surendranath,; M. W. Kanan,; D. G. Nocera, Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501-16509.
[22]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[23]
C. H. Shek,; J. K. L. Lai,; G. M. Lin, Investigation of interface defects in nanocrystalline SnO2 by positron annihilation. J. Phys. Chem. Solids 1999, 60, 189-193.
[24]
X. C. Jiao,; Z. W. Chen,; X. D. Li,; Y. F. Sun,; S. Gao,; W. S. Yan,; C. M. Wang,; Q. Zhang,; Y. Lin,; Y. Luo, et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586-7594.
[25]
Q. C. Yuan,; D. Liu,; N. Zhang,; W. Ye,; H. X. Ju,; L. Shi,; R. Long,; J. F. Zhu,; Y. J. Xiong, Noble-metal-free Janus-like structures by cation exchange for Z-scheme photocatalytic water splitting under broadband light irradiation. Angew. Chem., Int. Ed. 2017, 56, 4206-4210.
[26]
J. G. Yu,; J. F. Xiong,; B. Cheng,; Y. Yu,; J. B. Wang, Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders. J. Solid State Chem. 2005, 178, 1968-1972.
[27]
R. Akbarzadeh,; S. B. Umbarkar,; R. S. Sonawane,; S. Takle,; M. K. Dongare, Vanadia-titania thin films for photocatalytic degradation of formaldehyde in sunlight. Appl. Catal. A: Gen. 2010, 374, 103-109.
[28]
X. B. Zhu,; C. Jin,; X. S. Li,; J. L. Liu,; Z. G. Sun,; C. Shi,; X. G. Li,; A. M. Zhu, Photocatalytic formaldehyde oxidation over plasmonic Au/TiO2 under visible light: Moisture indispensability and light enhancement. ACS Catal. 2017, 7, 6514-6524.
[29]
S. Sun,; J. J. Ding,; J. Bao,; C. Gao,; Z. M. Qi,; C. X. Li, Photocatalytic oxidation of gaseous formaldehyde on TiO2: An in situ DRIFTS study. Catal. Lett. 2010, 137, 239-246.
[30]
C. B. Zhang,; H. He, A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature. Catal. Today 2007, 126, 345-350.
[31]
D. Kibanova,; M. Sleiman,; J. Cervini-Silva,; H. Destaillats, Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO2 composite. J. Hazard. Mater. 2012, 211-212, 233-239.
[32]
J. Y. Yao,; X. L. Zeng,; Z. Y. Wang, Enhanced degradation performance of sulfisoxazole using peroxymonosulfate activated by copper-cobalt oxides in aqueous solution: Kinetic study and products identification. Chem. Eng. J. 2017, 330, 345-354.
[33]
S. Q. Huang,; Y. G. Xu,; M. Xie,; Q. Q. Liu,; H. Xu,; Y. Zhao,; M. Q. He,; H. M. Li, A Z-scheme magnetic recyclable Ag/AgBr@CoFe2O4 photocatalyst with enhanced photocatalytic performance for pollutant and bacterial elimination. RSC Adv. 2017, 7, 30845-30854.
[34]
N. Zhang,; X. Y. Li,; H. C. Ye,; S. M. Chen,; H. X. Ju,; D. B. Liu,; Y. Lin,; W. Ye,; C. M. Wang,; Q. Xu, et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928-8935.
[35]
E. L. G. Samuel,; D. C. Marcano,; V. Berka,; B. R. Bitner,; G. Wu,; A. Potter,; R. H. Fabian,; R. G. Pautler,; T. A. Kent,; A. L. Tsai, et al. Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters. Proc. Natl. Acad. Sci. USA 2015, 112, 2343-2348.
[36]
Y. J. Cui,; Z. X. Ding,; P. Liu,; M. Antonietti,; X. Z. Fu,; X. C. Wang, Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys. Chem. Chem. Phys. 2012, 14, 1455-1462.
Nano Research
Pages 1471-1478
Cite this article:
Shao W, Li X, Zu X, et al. Probing reaction pathways for H2O-mediated HCHO photooxidation at room temperature. Nano Research, 2021, 14(5): 1471-1478. https://doi.org/10.1007/s12274-020-3205-y
Topics:

799

Views

13

Crossref

N/A

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 31 August 2020
Revised: 27 September 2020
Accepted: 15 October 2020
Published: 13 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return