Journal Home > Volume 14 , Issue 7

Phosphorescent carbon nanodots (CNDs) have various attractive properties and potential applications, but it remains a formidable challenge to achieve large-scale phosphorescent CNDs limited by current methods. Herein, a large-scale synthesis method for phosphorescent CNDs has been demonstrated via precursors’ self-exothermic reaction at room temperature. The as-prepared CNDs show fluorescence and phosphorescence property, which are comparable with that synthesized by solvothermal and microwave method. Experimental and computational studies indicate that exotic atom doped sp2 hybridized carbon core works as an emissive center, which facilities the intersystem crossing from singlet state to triplet state. The CNDs show phosphorescence with tunable lifetimes from 193 ms to 1.13 s at different temperatures. The demonstration of large-scale synthesis of phosphorescent CNDs at room temperature opens up a new window for room temperature fabrication phosphorescent CNDs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-exothermic reaction driven large-scale synthesis of phosphorescent carbon nanodots

Show Author's information Shi-Yu Song1,§Lai-Zhi Sui2,§Kai-Kai Liu1( )Qing Cao1Wen-Bo Zhao1Ya-Chuan Liang1Chao-Fan Lv1Jin-Hao Zang1Yuan Shang1,3( )Qing Lou1Xi-Gui Yang1Lin Dong1Kai-Jun Yuan2Chong-Xin Shan1( )
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
Super Computer Center, Smart City Institute, Zhengzhou University, Zhengzhou 450001, China

§ Shi-Yu Song and Lai-Zhi Sui contributed equally to this work.

Abstract

Phosphorescent carbon nanodots (CNDs) have various attractive properties and potential applications, but it remains a formidable challenge to achieve large-scale phosphorescent CNDs limited by current methods. Herein, a large-scale synthesis method for phosphorescent CNDs has been demonstrated via precursors’ self-exothermic reaction at room temperature. The as-prepared CNDs show fluorescence and phosphorescence property, which are comparable with that synthesized by solvothermal and microwave method. Experimental and computational studies indicate that exotic atom doped sp2 hybridized carbon core works as an emissive center, which facilities the intersystem crossing from singlet state to triplet state. The CNDs show phosphorescence with tunable lifetimes from 193 ms to 1.13 s at different temperatures. The demonstration of large-scale synthesis of phosphorescent CNDs at room temperature opens up a new window for room temperature fabrication phosphorescent CNDs.

Keywords: carbon nanodots, phosphorescence, large scale, self-exothermic reaction

References(53)

[1]
Gong, Y. Y.; Chen, G.; Peng, Q.; Yuan, W. Z.; Xie, Y. J.; Li, S. H.; Zhang, Y. M.; Tang, B. Z. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens. Adv. Mater. 2015, 27, 6195-6201.
[2]
Cai, S. Z.; Shi, H. F.; Li, J. W.; Gu, L.; Ni, Y.; Cheng, Z. C.; Wang, S.; Xiong, W. W.; Li, L.; An, Z. F. et al. Visible-light-excited ultralong organic phosphorescence by manipulating intermolecular interactions. Adv. Mater. 2017, 29, 1701244
[3]
Sun, H. B.; Liu, S. J.; Lin, W. P.; Zhang, K. Y.; Lv, W.; Huang, X.; Huo, F. W.; Yang, H. R.; Jenkins, G.; Zhao, Q. et al. Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 2014, 5, 3601.
[4]
An, Z. F.; Zheng, C.; Tao, Y.; Chen, R. F.; Shi, H. F.; Chen, T.; Wang, Z. X.; Li, H. H.; Deng, R. R.; Liu, X. G. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 2015, 14, 685-690.
[5]
He, Z. K.; Zhao, W. J.; Lam, J. W. Y.; Peng, Q.; Ma, H. L.; Liang, G. D.; Shuai, Z. G.; Tang, B. Z. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat. Commun. 2017, 8, 416.
[6]
Liang, Y. C.; Gou, S. S.; Liu, K. K.; Wu, W. J.; Guo, C. Z.; Lu, S. Y.; Zang, J. H.; Wu, X. Y.; Lou, Q.; Dong, L. et al. Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution. Nano Today 2020, 34, 100900.
[7]
Li, D. F.; Lu, F. F.; Wang, J.; Hu, W. D.; Cao, X. M.; Ma, X.; Tian, H. Amorphous metal-free room-temperature phosphorescent small molecules with multicolor photoluminescence via a host-guest and dual-emission strategy. J. Am. Chem. Soc. 2018, 140, 1916-1923.
[8]
Liu, K. K.; Liu, Q.; Yang, D. W.; Liang, Y. C.; Sui, L. Z.; Wei, J. Y.; Xue, G. W.; Zhao, W. B.; Wu, X. Y.; Dong, L. et al. Water-induced MAPbBr3@PbBr(OH) with enhanced luminescence and stability. Light: Sci. Appl. 2020, 9, 44.
[9]
Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room- temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435-2445.
[10]
Wei, J. Y.; Lou, Q.; Zang, J. H.; Liu, Z. Y.; Ye, Y. L.; Shen, C. L.; Zhao, W. B.; Dong, L.; Shan, C. X. Scalable Synthesis of Green Fluorescent Carbon Dot Powders with Unprecedented Efficiency. Adv. Opt. Mater. 2020, 8, 1901938.
[11]
Zheng, Y. B.; Liu, H. Y.; Li, J. X.; Xiang, J.; Panmai, M.; Dai, Q. F.; Xu, Y.; Tie, S. L.; Lan, S. Controllable formation of luminescent carbon quantum dots mediated by the Fano resonances formed in oligomers of gold nanoparticles. Adv. Mater. 2019, 31, 1901371.
[12]
Zhang, J.; Yuan, Y.; Gao, M. L.; Han, Z.; Chu, C. Y.; Li, Y. G.; van Zijl, P. C. M.; Ying, M. Y.; Bulte, J. W. M.; Liu, G. S. Carbon dots as a new class of diamagnetic chemical exchange saturation transfer (diaCEST) MRI contrast agents. Angew. Chem., Int. Ed. 2019, 58, 9871-9875.
[13]
Li, H. X.; Yan, X.; Kong, D. S.; Jin, R.; Sun, C. Y.; Du, D.; Lin, Y. H.; Lu, G. Y. Recent advances in carbon dots for bioimaging applications. Nanoscale Horiz. 2020, 5, 218-234.
[14]
Ye, X. X.; Xiang, Y. H.; Wang, Q. R.; Li, Z.; Liu, Z. H. A red emissive two-photon fluorescence probe based on carbon dots for intracellular pH detection. Small 2019, 15, 1901673.
[15]
Wei, X. J.; Li, L.; Liu, J. L.; Yu, L. D.; Li, H. B.; Cheng, F.; Yi, X. T.; He, J. M.; Li, B. S. Green synthesis of fluorescent carbon dots from gynostemma for bioimaging and antioxidant in Zebrafish. ACS Appl. Mater. Interfaces 2019, 11, 9832-9840.
[16]
Sun, S.; Chen, J. Q.; Jiang, K.; Tang, Z. D.; Wang, Y. H.; Li, Z. J.; Liu, C. B.; Wu, A. G.; Lin, H. W. Ce6-modified carbon dots for multimodal- imaging-guided and single-NIR-laser-triggered photothermal/ photodynamic synergistic cancer therapy by reduced irradiation power. ACS Appl. Mater. Interfaces 2019, 11, 5791-5803.
[17]
Liu, K. K.; Song, S. Y.; Sui, L. Z.; Wu, S. X.; Jing, P. T.; Wang, R. Q.; Li, Q. Y.; Wu, G. R.; Zhang, Z. Z.; Yuan, K. J. et al. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence. Adv. Sci. 2019, 6, 1900766.
[18]
Zhi, B.; Cui, Y.; Wang, S. Y.; Frank, B. P.; Williams, D. N.; Brown, R. P.; Melby, E. S.; Hamers, R. J.; Rosenzweig, Z.; Fairbrother, D. H. et al. Malic acid carbon dots: From super-resolution live-cell imaging to highly efficient separation. ACS Nano 2018, 12, 5741-5752.
[19]
Shen, C. L.; Lou, Q.; Zang, J. H.; Liu, K. K.; Qu, S. N.; Dong, L.; Shan, C. X. Near-infrared chemiluminescent carbon nanodots and their application in reactive oxygen species bioimaging. Adv. Sci. 2020, 7, 1903525.
[20]
Shen, C. L.; Lou, Q.; Lv, C. F.; Zang, J. H.; Qu, S. N.; Dong, L.; Shan, C. X. Bright and Multicolor Chemiluminescent Carbon Nanodots for Advanced Information Encryption. Adv. Sci. 2019, 6, 1802331.
[21]
Li, Y. B.; Bai, G. X.; Zeng, S. J.; Hao, J. H. Theranostic carbon dots with innovative NIR-II emission for in vivo renal-excreted optical imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2019, 11, 4737-4744.
[22]
Song, S. Y.; Liu, K. K.; Wei, J. Y.; Lou, Q.; Shang, Y.; Shan, C. X. Deep-ultraviolet emissive carbon nanodots. Nano Lett. 2019, 19, 5553-5561.
[23]
Feng, T. L.; Zeng, Q. S.; Lu, S. Y.; Yan, X. J.; Liu, J. J.; Tao, S. Y.; Yang, M. X.; Yang, B. Color-tunable carbon dots possessing solid- state emission for full-color light-emitting diodes applications. ACS Photonics 2018, 5, 502-510.
[24]
Yuan, F. L.; Wang, Y. K.; Sharma, G.; Dong, Y. T.; Zheng, X. P.; Li, P. C.; Johnston, A.; Bappi, G.; Fan, J. Z.; Kung, H. et al. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nat. Photonics 2020, 14, 171-176.
[25]
Semeniuk, M.; Yi, Z. H.; Poursorkhabi, V.; Tjong, J.; Jaffer, S.; Lu, Z. H.; Sain, M. Future perspectives and review on organic carbon dots in electronic applications. ACS Nano 2019, 13, 6224-6255.
[26]
Jiang, K.; Gao, X. L.; Feng, X. Y.; Wang, Y. H.; Li, Z. J.; Lin, H. W. Carbon dots with dual-emissive, robust, and aggregation-induced room-temperature phosphorescence characteristics. Angew. Chem., Int. Ed. 2020, 59, 1263-1269.
[27]
Tang, G. Q.; Zhang, K.; Feng, T. L.; Tao, S. Y.; Han, M.; Li, R.; Wang, C. C.; Wang, Y.; Yang, B. One-step preparation of silica microspheres with super-stable ultralong room temperature phosphorescence. J. Mater. Chem. C 2019, 7, 8680-8687.
[28]
Lin, C. J.; Zhuang, Y. X.; Li, W. H.; Zhou, T. L.; Xie, R. J. Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale 2019, 11, 6584-6590.
[29]
Li, W.; Wu, S. S.; Xu, X. K.; Zhuang, J. L.; Zhang, H. R.; Zhang, X. J.; Hu, C. F.; Lei, B. F.; Kaminski, C. F.; Liu, Y. Q. Carbon dot- silica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature. Chem. Mater. 2019, 31, 9887-9894.
[30]
Li, Q. J.; Zhou, M.; Yang, Q. F.; Wu, Q.; Shi, J.; Gong, A. H.; Yang, M. Y. Efficient room-temperature phosphorescence from nitrogen- doped carbon dots in composite matrices. Chem. Mater. 2016, 28, 8221-8227.
[31]
Liu, J. C.; Zhang, H. Y.; Wang, N.; Yu, Y.; Cui, Y. Z.; Li, J. Y.; Yu, J. H. Template-modulated afterglow of carbon dots in zeolites: Room- temperature phosphorescence and thermally activated delayed fluorescence. ACS Mater. Lett. 2019, 1, 58-63.
[32]
Li, W.; Zhou, W.; Zhou, Z. S.; Zhang, H. R.; Zhang, X. J.; Zhuang, J. L.; Liu, Y. L.; Lei, B. F.; Hu, C. F. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix. Angew. Chem., Int. Ed. 2019, 58, 7278-7283.
[33]
Zhang, J. Y.; Lu, X. M.; Tang, D. D.; Wu, S. H.; Hou, X. D.; Liu, J. W.; Wu, P. Phosphorescent carbon dots for highly efficient oxygen photosensitization and as photo-oxidative nanozymes. ACS Appl. Mater. Interfaces 2018, 10, 40808-40814.
[34]
Tao, S. Y.; Lu, S. Y.; Geng, Y. J.; Zhu, S. J.; Redfern, S. A. T.; Song, Y. B.; Feng, T. L.; Xu, W. Q.; Yang, B. Design of metal-free polymer carbon dots: A new class of room-temperature phosphorescent materials. Angew. Chem., Int. Ed. 2018, 57, 2393-2398.
[35]
Wang, C.; Chen, Y. Y.; Xu, Y. L.; Ran, G. X.; He, Y. M.; Song, Q. J. Aggregation-induced room-temperature phosphorescence obtained from water-dispersible carbon dot-based composite materials. ACS Appl. Mater. Interfaces 2020, 12, 10791-10800.
[36]
Jiang, K.; Hu, S. Z.; Wang, Y. C.; Li, Z. J.; Lin, H. W. Photo-stimulated polychromatic room temperature phosphorescence of carbon dots. Small 2020, 16, 2001909.
[37]
De Medeiros, T. V.; Manioudakis, J.; Noun, F.; Macairan, J. R.; Victoria, F.; Naccache, R. Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C 2019, 7, 7175-7195.
[38]
Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.
[39]
Kenry; Chen, C. J.; Liu, B. Enhancing the performance of pure organic room-temperature phosphorescent luminophores. Nat. Commun. 2019, 10, 2111.
[40]
Lower, S. K.; El-Sayed, M. A. The triplet state and molecular electronic processes in organic molecules. Chem. Rev. 1966, 66, 199-241.
[41]
Jiang, K.; Wang, Y. H.; Cai, C. Z.; Lin, H. W. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv. Mater. 2018, 30, 1800783.
[42]
Zhao, W. J.; He, Z. K.; Lam, J. W. Y.; Peng, Q.; Ma, H. L.; Shuai, Z. G.; Bai, G. X.; Hao, J. H.; Tang, B. Z. Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence. Chem 2016, 1, 592-602.
[43]
Sun, C.; Zhang, Y.; Ruan, C.; Yin, C. Y.; Wang, X. Y.; Wang, Y. D.; Yu, W. W. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater. 2016, 28, 10088-10094.
[44]
Li, D.; Jing, P. T.; Sun, L. H.; An, Y.; Shan, X. Y.; Lu, X. H.; Zhou, D.; Han, D.; Shen, D. Z.; Zhai, Y. C. et al. Near-infrared excitation/ emission and multiphoton-induced fluorescence of carbon dots. Adv. Mater. 2018, 30, 1705913.
[45]
Vallan, L.; Urriolabeitia, E. P.; Ruipérez, F.; Matxain, J. M.; Canton-Vitoria, R.; Tagmatarchis, N.; Benito, A. M.; Maser, W. K. Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots. J. Am. Chem. Soc. 2018, 140, 12862-12869.
[46]
Geng, X.; Sun, Y. Q.; Li, Z. H.; Yang, R.; Zhao, Y. M.; Guo, Y. F.; Xu, J. J.; Li, F. T.; Wang, Y.; Lu, S. Y. et al. Retrosynthesis of tunable fluorescent carbon dots for precise long-term mitochondrial tracking. Small 2019, 15, 1901517.
[47]
Yang, H. Y.; Liu, Y. L.; Guo, Z. Y.; Lei, B. F.; Zhuang, J. L.; Zhang, X. J.; Liu, Z. M.; Hu, C. F. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 2019, 10, 1789.
[48]
Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.
[49]
Lu, S. Y.; Xiao, G. J.; Sui, L. Z.; Feng, T. L.; Yong, X.; Zhu, S. J.; Li, B. J.; Liu, Z. Y.; Zou, B.; Jin, M. X. et al. Piezochromic carbon dots with two-photon fluorescence. Angew. Chem., Int. Ed. 2017, 56, 6187-6191.
[50]
Sharma, A.; Gadly, T.; Neogy, S.; Ghosh, S. K.; Kumbhakar, M. Molecular Origin and Self-Assembly of Fluorescent Carbon Nanodots in Polar Solvents. J. Phys. Chem. Lett. 2017, 8, 1044-1052.
[51]
Reckmeier, C. J.; Wang, Y.; Zboril, R.; Rogach, A. L. Influence of doping and temperature on solvatochromic shifts in optical spectra of carbon dots. J. Phys. Chem. C 2016, 120, 10591-10604.
[52]
Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.
[53]
Liang, Y. C.; Shang, Y.; Liu, K. K.; Liu, Z.; Wu, W. J.; Liu, Q.; Zhao, Q.; Wu, X. Y.; Dong, L.; Shan, C. X. Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks. Nano Res. 2020, 13, 875-881.
File
12274_2020_3204_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 August 2020
Revised: 14 October 2020
Accepted: 16 October 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11904326, U1804155, and U1604263), China Postdoctoral Science Foundation (Nos. 2019TQ0287, and 2019M662510), the Chemical Dynamics Research Center (No. 21688102), the Key Technology Team of the Chinese Academy of Sciences (No. GJJSTD20190002).

Return