Journal Home > Volume 14 , Issue 5

Rational design of catalytic sites to activate the inert N≡N bond is of paramount importance to advance N2 electroreduction. Here, guided by the theoretical predictions, we construct a NiFe layered double hydroxide (NiFe-LDH) nanosheet catalyst with a high density of electron-deficient sites, which were achieved by introducing oxygen vacancies in NiFe-LDH. Density functional theory calculations indicate that the electron-deficient sites show a much lower energy barrier (0.76 eV) for the potential determining step compared with that of the pristine NiFe-LDH (2.02 eV). Benefiting from this, the NiFe-LDH with oxygen vacancies exhibits the greatly improved electrocatalytic activity, presenting a high NH3 yield rate of 19.44 µg·h-1·mgcat-1, Faradaic efficiency of 19.41% at -0.20 V vs. reversible hydrogen electrode (RHE) in 0.1 M KOH electrolyte, as well as the outstanding stability. The present work not only provides an active electrocatalyst toward N2 reduction but also offers a facile strategy to boost the N2 reduction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Theory-guided construction of electron-deficient sites via removal of lattice oxygen for the boosted electrocatalytic synthesis of ammonia

Show Author's information Li Zhang1,§Shilong Jiao2,§Xin Tan3,§Yuliang Yuan1Yu Xiang4Yu-Jia Zeng2Jingyi Qiu4( )Ping Peng1( )Sean C. Smith3Hongwen Huang1( )
College of Materials Science and Engineering, Hunan University, Changsha 410082, China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, China
Integrated Materials Design Laboratory, Department of Applied Mathematics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
Research Institute of Chemical Defense, Beijing 100191, China

Abstract

Rational design of catalytic sites to activate the inert N≡N bond is of paramount importance to advance N2 electroreduction. Here, guided by the theoretical predictions, we construct a NiFe layered double hydroxide (NiFe-LDH) nanosheet catalyst with a high density of electron-deficient sites, which were achieved by introducing oxygen vacancies in NiFe-LDH. Density functional theory calculations indicate that the electron-deficient sites show a much lower energy barrier (0.76 eV) for the potential determining step compared with that of the pristine NiFe-LDH (2.02 eV). Benefiting from this, the NiFe-LDH with oxygen vacancies exhibits the greatly improved electrocatalytic activity, presenting a high NH3 yield rate of 19.44 µg·h-1·mgcat-1, Faradaic efficiency of 19.41% at -0.20 V vs. reversible hydrogen electrode (RHE) in 0.1 M KOH electrolyte, as well as the outstanding stability. The present work not only provides an active electrocatalyst toward N2 reduction but also offers a facile strategy to boost the N2 reduction.

Keywords: density functional theory, nitrogen reduction, oxygen vacancies, electron-deficient sites

References(52)

[1]
J. C. Guo,; H. Wang,; F. Xue,; D. Yu,; L. Zhang,; S. L. Jiao,; Y. H. Liu,; Y. F. Lu,; M. C. Liu,; S. C. Ruan, et al. Tunable synthesis of multiply twinned intermetallic Pd3Pb nanowire networks toward efficient N2 to NH3 conversion. J. Mater. Chem. A 2019, 7, 20247-20253.
[2]
S. L. Jiao,; X. W. Fu,; L. Zhang,; Y. J. Zeng,; H. W. Huang, Point-defect-optimized electron distribution for enhanced electrocatalysis: Towards the perfection of the imperfections. Nano Today 2020, 31, 100833.
[3]
J. X. Yao,; D. Bao,; Q. Zhang,; M. M. Shi,; Y. Wang,; R. Gao,; J. M. Yan,; Q. Jiang, Tailoring oxygen vacancies of BiVO4 toward highly efficient noble-metal-free electrocatalyst for artificial N2 fixation under ambient conditions. Small Methods 2019, 3, 1800333.
[4]
H. C. Tao,; C. Choi,; L. X. Ding,; Z. Jiang,; Z. S. Han,; M. W. Jia,; Q. Fan,; Y. N. Gao,; H. H. Wang,; A. W. Robertson, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204-214.
[5]
J. Wang,; L. Yu,; L. Hu,; G. Chen,; H. L. Xin,; X. F. Feng, Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.
[6]
H. Cheng,; L. X. Ding,; G. F. Chen,; L. L. Zhang,; J. Xue,; H. H. Wang, Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.
[7]
Y. Zhang,; W. B. Qiu,; Y. J. Ma,; Y. L. Luo,; Z. Q. Tian,; G. W. Cui,; F. Y. Xie,; L. Chen,; T. S. Li,; X. P. Sun, High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions. ACS Catal. 2018, 8, 8540-8544.
[8]
D. Bao,; Q. Zhang,; F. L. Meng,; H. X. Zhong,; M. M. Shi,; Y. Zhang,; J. M. Yan,; Q. Jiang,; X. B. Zhang, Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.
[9]
W. B. Qiu,; X. Y. Xie,; J. D. Qiu,; W. H. Fang,; R. P. Liang,; X. Ren,; X. Q. Ji,; G. W. Cui,; A. M. Asiri,; G. L. Cui, et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.
[10]
C. D. Lv,; Y. M. Qian,; C. S. Yan,; Y. Ding,; Y. Y. Liu,; G. Chen,; G. H. Yu, Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 10246-10250.
[11]
C. D. Lv,; C. S. Yan,; G. Chen,; Y. Ding,; J. X. Sun,; Y. S. Zhou,; G. H. Yu, An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073-6076.
[12]
G. Zhang,; Q. H. Ji,; K. Zhang,; Y. Chen,; Z. H. Li,; H. J. Liu,; J. H. Li,; J. H. Qu, Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation. Nano Energy 2019, 59, 10-16.
[13]
K. Chu,; Y. P. Liu,; Y. H. Cheng,; Q. Q. Li, Synergistic boron-dopants and boron-induced oxygen vacancies in MnO2 nanosheets to promote electrocatalytic nitrogen reduction. J. Mater. Chem. A 2020, 8, 5200-5208.
[14]
X. H. Zhao,; X. Zhang,; Z. M. Xue,; W. J. Chen,; Z. Zhou,; T. C. Mu, Fe nanodot-decorated MoS2 nanosheets on carbon cloth: An efficient and flexible electrode for ambient ammonia synthesis. J. Mater. Chem. A 2019, 7, 27417-27422.
[15]
B. Y. Li,; X. J. Zhu,; J. W. Wang,; R. M. Xing,; Q. Liu,; X. F. Shi,; Y. L. Luo,; S. H. Liu,; X. B. Niu,; X. P. Sun, Ti3+ self-doped TiO2-x nanowires for efficient electrocatalytic N2 reduction to NH3. Chem. Commun. 2020, 56, 1074-1077.
[16]
Y. H. Li,; H. J. Yu,; Z. Q. Wang,; S. L. Liu,; Y. Xu,; X. N. Li,; L. Wang,; H. J. Wang, Boron-doped silver nanosponges with enhanced performance towards electrocatalytic nitrogen reduction to ammonia. Chem. Commun. 2019, 55, 14745-14748.
[17]
K. Chu,; Y. P. Liu,; Y. B. Li,; Y. L. Guo,; Y. Tian,; H. Zhang, Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation. Appl. Catal. B: Environ. 2020, 264, 118525.
[18]
Z. S. Han,; C. Choi,; S. Hong,; T. S. Wu,; Y. L. Soo,; Y. Jung,; J. S. Qiu,; Z. Y. Sun, Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. Appl. Catal. B: Environ. 2019, 257, 117896.
[19]
S. Zhao,; H. X. Liu,; Y. Qiu,; S. Q. Liu,; J. X. Diao,; C. R. Chang,; R. Si,; X. H. Guo, An oxygen vacancy-rich two-dimensional Au/TiO2 hybrid for synergistically enhanced electrochemical N2 activation and reduction. J. Mater. Chem. A 2020, 8, 6586-6596.
[20]
F. L. Lai,; J. R. Feng,; X. B. Ye,; W. Zong,; G. J. He,; C. Yang,; W. Wang,; Y. E. Miao,; B. C. Pan,; W. S. Yan, et al. Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. J. Mater. Chem. A 2020, 8, 1652-1659.
[21]
M. F. Shao,; R. K. Zhang,; Z. H. Li,; M. Wei,; D. G. Evans,; X. Duan, Layered double hydroxides toward electrochemical energy storage and conversion: Design, synthesis and applications. Chem. Commun. 2015, 51, 15880-15893.
[22]
D. D. Jiang,; X. Q. Li,; Q. Jia, Design of two-dimensional layered double hydroxide nanosheets embedded with Fe3O4 for highly selective enrichment and isotope labeling of phosphopeptides. ACS Sustainable Chem. Eng. 2019, 7, 421-429.
[23]
N. L. W. Septiani,; Y. V. Kaneti,; Y. N. Guo,; B. Yuliarto,; X. C. Jiang,; Y. Ide,; N. Nugraha,; H. K. Dipojono,; A. B. Yu,; Y. Sugahara, et al. Holey assembly of two-dimensional iron-doped nickel-cobalt layered double hydroxide nanosheets for energy conversion application. ChemSusChem 2020, 13, 1645-1655.
[24]
D. J. Zhou,; Z. Cai,; Y. Jia,; X. Y. Xiong,; Q. X. Xie,; S. Y. Wang,; Y. Zhang,; W. Liu,; H. H. Duan,; X. M. Sun, Activating basal plane in NiFe layered double hydroxide by Mn2+ doping for efficient and durable oxygen evolution reaction. Nanoscale Horiz. 2018, 3, 532-537.
[25]
D. Zhu,; L. H. Zhang,; R. E. Ruther,; R. J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836-841.
[26]
G. W. Watt,; J. D. Chrisp, Spectrophotometric method for determination of hydrazine. Anal. Chem. 1952, 24, 2006-2008.
[27]
G. Kresse,; J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251-14269.
[28]
G. Kresse,; D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[29]
G. Kresse,; J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[30]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[31]
S. Grimme,; J. Antony,; S. Ehrlich,; H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
[32]
M. Cococcioni,; S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 2005, 71, 035105.
[33]
J. F. Zhang,; J. Y. Liu,; L. F. Xi,; Y. F. Yu,; N. Chen,; S. H. Sun,; W. C. Wang,; K. M. Lange,; B. Zhang, Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876-3879.
[34]
Y. Dong,; P. X. Zhang,; Y. L. Kou,; Z. Y. Yang,; Y. P. Li,; X. M. Sun, A first-principles study of oxygen formation over NiFe-layered double hydroxides surface. Catal. Lett. 2015, 145, 1541-1548.
[35]
D. J. Chadi, Special points for Brillouin-zone integrations. Phys. Rev. B 1977, 16, 1746-1747.
[36]
C. Choi,; S. Back,; N. Y. Kim,; J. Lim,; Y. H. Kim,; Y. Jung, Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517-7525.
[37]
X. H. Li,; T. S. Li,; Y. J. Ma,; Q. Wei,; W. B. Qiu,; H. R. Guo,; X. F. Shi,; P. Zhang,; A. M. Asiri,; L. Chen, et al. Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower. Adv. Energy Mater. 2018, 8, 1801357.
[38]
S. M. Yin,; W. G. Tu,; Y. Sheng,; Y. H. Du,; M. Kraft,; A. Borgna,; R. Xu, A highly efficient oxygen evolution catalyst consisting of interconnected nickel-iron-layered double hydroxide and carbon nanodomains. Adv. Mater. 2018, 30, 1705106.
[39]
L. Yu,; H. Q. Zhou,; J. Y. Sun,; F. Qin,; F. Yu,; J. M. Bao,; Y. Yu,; S. Chen,; Z. F. Ren, Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820-1827.
[40]
W. Wang,; Y. C. Liu,; J. Li,; J. Luo,; L. Fu,; S. L. Chen, NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. J. Mater. Chem. A 2018, 6, 14299-14306.
[41]
S. Sirisomboonchai,; S. S. Li,; A. Yoshida,; X. M. Li,; C. Samart,; A. Abudula,; G. Q. Guan, Fabrication of NiO Microflake@NiFe-LDH nanosheet heterostructure electrocatalysts for oxygen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 2327-2334.
[42]
J. F. Xie,; J. P. Xin,; R. X. Wang,; X. D. Zhang,; F. C. Lei,; H. C. Qu,; P. Hao,; G. W. Cui,; B. Tang,; Y. Xie, Sub-3 nm pores in two-dimensional nanomesh promoting the generation of electroactive phase for robust water oxidation. Nano Energy 2018, 53, 74-82.
[43]
M. Asnavandi,; Y. C. Yin,; Y. B. Li,; C. H. Sun,; C. Zhao, Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe-OOH catalysts. ACS Energy Lett. 2018, 3, 1515-1520.
[44]
J. N. Wang,; G. R. Yang,; L. Wang,; W. Yan, Synthesis of one-dimensional NiFe2O4 nanostructures: Tunable morphology and high-performance anode materials for Li ion batteries. J. Mater. Chem. A 2016, 4, 8620-8629.
[45]
S. L. Jiao,; Z. Y. Yao,; M. F. Li,; C. Mu,; H. W. Liang,; Y. J. Zeng,; H. W. Huang, Accelerating oxygen evolution electrocatalysis of two-dimensional NiFe layered double hydroxide nanosheets via space-confined amorphization. Nanoscale 2019, 11, 18894-18899.
[46]
S. L. Jiao,; Z. Y. Yao,; F. Xue,; Y. F. Lu,; M. C. Liu,; H. Q. Deng,; X. F. Ma,; Z. X. Liu,; C. Ma,; H. W. Huang, et al. Defect-rich one-dimensional MoS2 hierarchical architecture for efficient hydrogen evolution: Coupling of multiple advantages into one catalyst. Appl. Catal. B: Environ. 2019, 258, 117964.
[47]
S. Nayak,; K. M. Parida, Deciphering Z-scheme charge transfer dynamics in heterostructure NiFe-LDH/N-rGO/g-C3N4 nanocomposite for photocatalytic pollutant removal and water splitting reactions. Sci. Rep. 2019, 9, 2458.
[48]
S. Anantharaj,; K. Karthick,; M. Venkatesh,; T. V. S. V. Simha,; A. S. Salunke,; L. Ma,; H. Liang,; S. Kundu, Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano Energy 2017, 39, 30-43.
[49]
L. Q. Li,; C. Tang,; D. Z. Yao,; Y. Zheng,; S. Z. Qiao, Electrochemical nitrogen reduction: Identification and elimination of contamination in electrolyte. ACS Energy Lett. 2019, 4, 2111-2116.
[50]
H. Y. Jin,; L. Q. Li,; X. Liu,; C. Tang,; W. J. Xu,; S. M. Chen,; L. Song,; Y. Zheng,; S. Z. Qiao, Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, 1902709.
[51]
Y. Cheng,; S. Y. Zhao,; B. Johannessen,; J. P. Veder,; M. Saunders,; M. R. Rowles,; M. Cheng,; C. Liu,; M. F. Chisholm,; R. De Marco, et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 2018, 30, 1706287.
[52]
Y. Cheng,; J. P. Veder,; L. Thomsen,; S. Y. Zhao,; M. Saunders,; R. Demichelis,; C. Liu,; R. De Marco,; S. P. Jiang, Electrochemically substituted metal phthalocyanines, e-MPc (M = Co, Ni), as highly active and selective catalysts for CO2 reduction. J. Mater. Chem. A 2018, 6, 1370-1375.
File
12274_2020_3202_MOESM1_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 August 2020
Revised: 23 September 2020
Accepted: 21 October 2020
Published: 02 November 2020
Issue date: May 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21603208), Shenzhen Science and Technology Project (Nos. JCYJ20170412105400428 and JCYJ20180507182246321), Shenzhen Peacock Technological Innovation Project (No. KQJSCX20170727101208249), Fundamental Research Funds for the Central Universities, the Open Project Program of the State Key Laboratory of Silicon Materials, Zhejiang University, and China Postdoctoral Science Foundation (No. 2019M663058). This research was undertaken with the assistance of resources provided by the National Computational Infrastructure (NCI) facility at the Australian National University; allocated through both the National Computational Merit Allocation Scheme supported by the Australian Government and the Australian Research Council grant LE190100021 (Sustaining and strengthening merit-based access at NCI, 2019-2021).

Return