[1]
J. C. Guo,; H. Wang,; F. Xue,; D. Yu,; L. Zhang,; S. L. Jiao,; Y. H. Liu,; Y. F. Lu,; M. C. Liu,; S. C. Ruan, et al. Tunable synthesis of multiply twinned intermetallic Pd3Pb nanowire networks toward efficient N2 to NH3 conversion. J. Mater. Chem. A 2019, 7, 20247-20253.
[2]
S. L. Jiao,; X. W. Fu,; L. Zhang,; Y. J. Zeng,; H. W. Huang, Point-defect-optimized electron distribution for enhanced electrocatalysis: Towards the perfection of the imperfections. Nano Today 2020, 31, 100833.
[3]
J. X. Yao,; D. Bao,; Q. Zhang,; M. M. Shi,; Y. Wang,; R. Gao,; J. M. Yan,; Q. Jiang, Tailoring oxygen vacancies of BiVO4 toward highly efficient noble-metal-free electrocatalyst for artificial N2 fixation under ambient conditions. Small Methods 2019, 3, 1800333.
[4]
H. C. Tao,; C. Choi,; L. X. Ding,; Z. Jiang,; Z. S. Han,; M. W. Jia,; Q. Fan,; Y. N. Gao,; H. H. Wang,; A. W. Robertson, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204-214.
[5]
J. Wang,; L. Yu,; L. Hu,; G. Chen,; H. L. Xin,; X. F. Feng, Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.
[6]
H. Cheng,; L. X. Ding,; G. F. Chen,; L. L. Zhang,; J. Xue,; H. H. Wang, Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.
[7]
Y. Zhang,; W. B. Qiu,; Y. J. Ma,; Y. L. Luo,; Z. Q. Tian,; G. W. Cui,; F. Y. Xie,; L. Chen,; T. S. Li,; X. P. Sun, High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions. ACS Catal. 2018, 8, 8540-8544.
[8]
D. Bao,; Q. Zhang,; F. L. Meng,; H. X. Zhong,; M. M. Shi,; Y. Zhang,; J. M. Yan,; Q. Jiang,; X. B. Zhang, Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.
[9]
W. B. Qiu,; X. Y. Xie,; J. D. Qiu,; W. H. Fang,; R. P. Liang,; X. Ren,; X. Q. Ji,; G. W. Cui,; A. M. Asiri,; G. L. Cui, et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.
[10]
C. D. Lv,; Y. M. Qian,; C. S. Yan,; Y. Ding,; Y. Y. Liu,; G. Chen,; G. H. Yu, Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 10246-10250.
[11]
C. D. Lv,; C. S. Yan,; G. Chen,; Y. Ding,; J. X. Sun,; Y. S. Zhou,; G. H. Yu, An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073-6076.
[12]
G. Zhang,; Q. H. Ji,; K. Zhang,; Y. Chen,; Z. H. Li,; H. J. Liu,; J. H. Li,; J. H. Qu, Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation. Nano Energy 2019, 59, 10-16.
[13]
K. Chu,; Y. P. Liu,; Y. H. Cheng,; Q. Q. Li, Synergistic boron-dopants and boron-induced oxygen vacancies in MnO2 nanosheets to promote electrocatalytic nitrogen reduction. J. Mater. Chem. A 2020, 8, 5200-5208.
[14]
X. H. Zhao,; X. Zhang,; Z. M. Xue,; W. J. Chen,; Z. Zhou,; T. C. Mu, Fe nanodot-decorated MoS2 nanosheets on carbon cloth: An efficient and flexible electrode for ambient ammonia synthesis. J. Mater. Chem. A 2019, 7, 27417-27422.
[15]
B. Y. Li,; X. J. Zhu,; J. W. Wang,; R. M. Xing,; Q. Liu,; X. F. Shi,; Y. L. Luo,; S. H. Liu,; X. B. Niu,; X. P. Sun, Ti3+ self-doped TiO2-x nanowires for efficient electrocatalytic N2 reduction to NH3. Chem. Commun. 2020, 56, 1074-1077.
[16]
Y. H. Li,; H. J. Yu,; Z. Q. Wang,; S. L. Liu,; Y. Xu,; X. N. Li,; L. Wang,; H. J. Wang, Boron-doped silver nanosponges with enhanced performance towards electrocatalytic nitrogen reduction to ammonia. Chem. Commun. 2019, 55, 14745-14748.
[17]
K. Chu,; Y. P. Liu,; Y. B. Li,; Y. L. Guo,; Y. Tian,; H. Zhang, Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation. Appl. Catal. B: Environ. 2020, 264, 118525.
[18]
Z. S. Han,; C. Choi,; S. Hong,; T. S. Wu,; Y. L. Soo,; Y. Jung,; J. S. Qiu,; Z. Y. Sun, Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. Appl. Catal. B: Environ. 2019, 257, 117896.
[19]
S. Zhao,; H. X. Liu,; Y. Qiu,; S. Q. Liu,; J. X. Diao,; C. R. Chang,; R. Si,; X. H. Guo, An oxygen vacancy-rich two-dimensional Au/TiO2 hybrid for synergistically enhanced electrochemical N2 activation and reduction. J. Mater. Chem. A 2020, 8, 6586-6596.
[20]
F. L. Lai,; J. R. Feng,; X. B. Ye,; W. Zong,; G. J. He,; C. Yang,; W. Wang,; Y. E. Miao,; B. C. Pan,; W. S. Yan, et al. Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. J. Mater. Chem. A 2020, 8, 1652-1659.
[21]
M. F. Shao,; R. K. Zhang,; Z. H. Li,; M. Wei,; D. G. Evans,; X. Duan, Layered double hydroxides toward electrochemical energy storage and conversion: Design, synthesis and applications. Chem. Commun. 2015, 51, 15880-15893.
[22]
D. D. Jiang,; X. Q. Li,; Q. Jia, Design of two-dimensional layered double hydroxide nanosheets embedded with Fe3O4 for highly selective enrichment and isotope labeling of phosphopeptides. ACS Sustainable Chem. Eng. 2019, 7, 421-429.
[23]
N. L. W. Septiani,; Y. V. Kaneti,; Y. N. Guo,; B. Yuliarto,; X. C. Jiang,; Y. Ide,; N. Nugraha,; H. K. Dipojono,; A. B. Yu,; Y. Sugahara, et al. Holey assembly of two-dimensional iron-doped nickel-cobalt layered double hydroxide nanosheets for energy conversion application. ChemSusChem 2020, 13, 1645-1655.
[24]
D. J. Zhou,; Z. Cai,; Y. Jia,; X. Y. Xiong,; Q. X. Xie,; S. Y. Wang,; Y. Zhang,; W. Liu,; H. H. Duan,; X. M. Sun, Activating basal plane in NiFe layered double hydroxide by Mn2+ doping for efficient and durable oxygen evolution reaction. Nanoscale Horiz. 2018, 3, 532-537.
[25]
D. Zhu,; L. H. Zhang,; R. E. Ruther,; R. J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836-841.
[26]
G. W. Watt,; J. D. Chrisp, Spectrophotometric method for determination of hydrazine. Anal. Chem. 1952, 24, 2006-2008.
[27]
G. Kresse,; J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251-14269.
[28]
G. Kresse,; D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[29]
G. Kresse,; J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[30]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[31]
S. Grimme,; J. Antony,; S. Ehrlich,; H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
[32]
M. Cococcioni,; S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 2005, 71, 035105.
[33]
J. F. Zhang,; J. Y. Liu,; L. F. Xi,; Y. F. Yu,; N. Chen,; S. H. Sun,; W. C. Wang,; K. M. Lange,; B. Zhang, Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876-3879.
[34]
Y. Dong,; P. X. Zhang,; Y. L. Kou,; Z. Y. Yang,; Y. P. Li,; X. M. Sun, A first-principles study of oxygen formation over NiFe-layered double hydroxides surface. Catal. Lett. 2015, 145, 1541-1548.
[35]
D. J. Chadi, Special points for Brillouin-zone integrations. Phys. Rev. B 1977, 16, 1746-1747.
[36]
C. Choi,; S. Back,; N. Y. Kim,; J. Lim,; Y. H. Kim,; Y. Jung, Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517-7525.
[37]
X. H. Li,; T. S. Li,; Y. J. Ma,; Q. Wei,; W. B. Qiu,; H. R. Guo,; X. F. Shi,; P. Zhang,; A. M. Asiri,; L. Chen, et al. Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower. Adv. Energy Mater. 2018, 8, 1801357.
[38]
S. M. Yin,; W. G. Tu,; Y. Sheng,; Y. H. Du,; M. Kraft,; A. Borgna,; R. Xu, A highly efficient oxygen evolution catalyst consisting of interconnected nickel-iron-layered double hydroxide and carbon nanodomains. Adv. Mater. 2018, 30, 1705106.
[39]
L. Yu,; H. Q. Zhou,; J. Y. Sun,; F. Qin,; F. Yu,; J. M. Bao,; Y. Yu,; S. Chen,; Z. F. Ren, Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820-1827.
[40]
W. Wang,; Y. C. Liu,; J. Li,; J. Luo,; L. Fu,; S. L. Chen, NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. J. Mater. Chem. A 2018, 6, 14299-14306.
[41]
S. Sirisomboonchai,; S. S. Li,; A. Yoshida,; X. M. Li,; C. Samart,; A. Abudula,; G. Q. Guan, Fabrication of NiO Microflake@NiFe-LDH nanosheet heterostructure electrocatalysts for oxygen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 2327-2334.
[42]
J. F. Xie,; J. P. Xin,; R. X. Wang,; X. D. Zhang,; F. C. Lei,; H. C. Qu,; P. Hao,; G. W. Cui,; B. Tang,; Y. Xie, Sub-3 nm pores in two-dimensional nanomesh promoting the generation of electroactive phase for robust water oxidation. Nano Energy 2018, 53, 74-82.
[43]
M. Asnavandi,; Y. C. Yin,; Y. B. Li,; C. H. Sun,; C. Zhao, Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe-OOH catalysts. ACS Energy Lett. 2018, 3, 1515-1520.
[44]
J. N. Wang,; G. R. Yang,; L. Wang,; W. Yan, Synthesis of one-dimensional NiFe2O4 nanostructures: Tunable morphology and high-performance anode materials for Li ion batteries. J. Mater. Chem. A 2016, 4, 8620-8629.
[45]
S. L. Jiao,; Z. Y. Yao,; M. F. Li,; C. Mu,; H. W. Liang,; Y. J. Zeng,; H. W. Huang, Accelerating oxygen evolution electrocatalysis of two-dimensional NiFe layered double hydroxide nanosheets via space-confined amorphization. Nanoscale 2019, 11, 18894-18899.
[46]
S. L. Jiao,; Z. Y. Yao,; F. Xue,; Y. F. Lu,; M. C. Liu,; H. Q. Deng,; X. F. Ma,; Z. X. Liu,; C. Ma,; H. W. Huang, et al. Defect-rich one-dimensional MoS2 hierarchical architecture for efficient hydrogen evolution: Coupling of multiple advantages into one catalyst. Appl. Catal. B: Environ. 2019, 258, 117964.
[47]
S. Nayak,; K. M. Parida, Deciphering Z-scheme charge transfer dynamics in heterostructure NiFe-LDH/N-rGO/g-C3N4 nanocomposite for photocatalytic pollutant removal and water splitting reactions. Sci. Rep. 2019, 9, 2458.
[48]
S. Anantharaj,; K. Karthick,; M. Venkatesh,; T. V. S. V. Simha,; A. S. Salunke,; L. Ma,; H. Liang,; S. Kundu, Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano Energy 2017, 39, 30-43.
[49]
L. Q. Li,; C. Tang,; D. Z. Yao,; Y. Zheng,; S. Z. Qiao, Electrochemical nitrogen reduction: Identification and elimination of contamination in electrolyte. ACS Energy Lett. 2019, 4, 2111-2116.
[50]
H. Y. Jin,; L. Q. Li,; X. Liu,; C. Tang,; W. J. Xu,; S. M. Chen,; L. Song,; Y. Zheng,; S. Z. Qiao, Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, 1902709.
[51]
Y. Cheng,; S. Y. Zhao,; B. Johannessen,; J. P. Veder,; M. Saunders,; M. R. Rowles,; M. Cheng,; C. Liu,; M. F. Chisholm,; R. De Marco, et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 2018, 30, 1706287.
[52]
Y. Cheng,; J. P. Veder,; L. Thomsen,; S. Y. Zhao,; M. Saunders,; R. Demichelis,; C. Liu,; R. De Marco,; S. P. Jiang, Electrochemically substituted metal phthalocyanines, e-MPc (M = Co, Ni), as highly active and selective catalysts for CO2 reduction. J. Mater. Chem. A 2018, 6, 1370-1375.