AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Lightweight porous silica foams with extreme-low dielectric permittivity and loss for future 6G wireless communication technologies

Petra S. Pálvölgyi1Daniel Sebők2Imre Szenti2Eva Bozo1Henri Ervasti1Olli Pitkänen1Jari Hannu1Heli Jantunen1Marko E. Leinonen3Sami Myllymäki1Akos Kukovecz2( )Krisztian Kordas1( )
Microelectronics Research Unit, Faculty of Information and Electrical Engineering, University of Oulu, P. O. Box 4500, FI-90570 Oulu, Finland
Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
Centre for Wireless Communications, University of Oulu, P. O. Box 4500, FI-90570 Oulu, Finland
Show Author Information

Graphical Abstract

Abstract

In the next generation wireless communication systems operating at near terahertz frequencies, dielectric substrates with the lowest possible permittivity and loss factor are becoming essential. In this work, highly porous (98.9% ± 0.1%) and lightweight silica foams (0.025 ± 0.005 g/cm3), that have extremely low relative permittivity (εr = 1.018 ± 0.003 at 300 GHz) and corresponding loss factor (tan δ < 3 × 10-4 at 300 GHz) are synthetized by a template-assisted sol-gel method. After dip-coating the slabs of foams with a thin film of cellulose nanofibers, sufficiently smooth surfaces are obtained, on which it is convenient to deposit electrically conductive planar thin films of metals important for applications in electronics and telecommunication devices. Here, micropatterns of Ag thin films are sputtered on the substrates through a shadow mask to demonstrate double split-ring resonator metamaterial structures as radio frequency filters operating in the sub-THz band.

Electronic Supplementary Material

Download File(s)
12274_2020_3201_MOESM1_ESM.pdf (1.7 MB)

References

[1]
P. Cabrol,; P. Pietraski, 60 GHz patch antenna array on low cost Liquid-Crystal Polymer (LCP) substrate. In Proceedings of 2014 IEEE Long Island Systems, Applications and Technology (LISAT), Farmingdale, NY, USA, 2014, pp 1-6.
[2]
S. J. Park,; D. H. Shin,; S. O. Park, Low side-lobe substrate-integrated-waveguide antenna array using broadband unequal feeding network for millimeter-wave handset device. IEEE Trans. Antennas Propag. 2015, 64, 923-932.
[3]
T. S. Rappaport,; S. Sun,; R. Mayzus,; H. Zhao,; Y. Azar,; K. Wang,; G. N. Wong,; J. K. Schulz,; M. Samimi,; F. Gutierrez, Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 2013, 1, 335-349.
[4]
H. J. Song,; T. Nagatsuma, Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 256-263.
[5]
M. Giordani,; M. Polese,; M. Mezzavilla,; S. Rangan,; M. Zorzi, Toward 6G networks: Use cases and technologies. IEEE Commun. Mag. 2020, 58, 55-61.
[6]
M. Z. Chowdhury,; M. Shahjalal,; M. K. Hasan,; Y. M. Jang, The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges. Appl. Sci. 2019, 9, 4367.
[7]
R. Waterhouse,; D. Novack, Realizing 5G: Microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 2015, 16, 84-92.
[8]
B. Y. Duan, Evolution and innovation of antenna systems for beyond 5G and 6G. Front. Inf. Technol. Electron. Eng. 2020, 21, 1-3.
[9]
Y. Imai, Nanoparticle technology handbook. In Ceramic Fillers for High Frequency Dielectric Composites. 2018; pp 619-623.
[10]
S. Z. Yu,; T. K. S. Wong,; K. Pita,; X. Hu, Synthesis of organically modified mesoporous silica as a low dielectric constant intermetal dielectric. J. Vac. Sci. Technol. B 2002, 20, 2036-2042.
[11]
M. T. Sebastian,; R. Ubic,; H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 2015, 60, 392-412.
[12]
M. T. Sebastian,; H. Jantunen, Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: A review. Int. J. Appl. Ceram. Technol. 2010, 7, 415-434.
[13]
J. R. Baker-Jarvis,; M. D. Janezic,; B. F. Riddle,; C. L. Holloway,; N. G. Paulter, Jr.; J. Blendell, Dielectric and conductor-loss characterization and measurements on electronic packaging materials. NIST Tech. Note 1520 2001, 152.
[14]
W. Volksen,; R. D. Miller,; G. Dubois, Low dielectric constant materials. Chem. Rev. 2010, 110, 56-110.
[15]
M. R. Baklanov,; K. Maex, Porous low dielectric constant materials for microelectronics. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 2006, 364, 201-215.
[16]
D. Gershon,; J. P. Calame,; A. Birnboim, Complex permittivity measurements and mixings laws of alumina composites. J. Appl. Phys. 2001, 89, 8110-8116.
[17]
K. Kordás,; G. Tóth,; J. Levoska,; M. Huuhtanen,; R. Keiski,; M. Härkönen,; T. F. George,; J. Vähäkangas, Room temperature chemical deposition of palladium nanoparticles in anodic aluminium oxide templates. Nanotechnology 2006, 17, 1459-1463.
[18]
I. Lee,; Q. Zhang,; J. P. Ge,; Y. D. Yin,; F. Zaera, Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. Nano Res. 2011, 4, 115-123.
[19]
B. Y. Guan,; T. Wang,; S. J. Zeng,; X. Wang,; D. An,; D. M. Wang,; Y. Cao,; D. X. Ma,; Y. L. Liu,; Q. S. Huo, A versatile cooperative template-directed coating method to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246-262.
[20]
L. Wang,; W. J. Zhao,; W. H. Tan, Bioconjugated silica nanoparticles: Development and applications. Nano Res. 2008, 1, 99-115.
[21]
Y. C. Chiang,; H. P. Lin,; H. H. Chang,; Y. W. Cheng,; H. Y. Tang,; W. C. Yen,; P. Y. Lin,; K. W. Chang,; C. P. Lin, A mesoporous silica biomaterial for dental biomimetic crystallization. ACS Nano 2014, 8, 12502-12513.
[22]
Y. Y. Li,; F. Cunin,; J. R. Link,; T. Gao,; R. E. Betts,; S. H. Reiver,; V. Chin,; S. N. Bhatia,; M. J. Sailor, Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 2003, 299, 2045-2047.
[23]
K. E. Shopsowitz,; H. Qi,; W. Y. Hamad,; M. J. MacLachlan, Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 2010, 468, 422-425.
[24]
X. Feng,; G. E. Fryxell,; L. Q. Wang,; A. Y. Kim,; J. Liu,; K. M. Kemner, Functionalized monolayers on ordered mesoporous supports. Science 1997, 276, 923-926.
[25]
S. J. Yu,; W. Li,; Y. Fujii,; T. Omura,; H. Minami, Fluorescent spherical sponge cellulose sensors for highly selective and semiquantitative visual analysis: Detection of Hg2+ and Cu2+ ions. ACS Sustainable Chem. Eng. 2019, 7, 19157-19166.
[26]
J. Mandal,; Y. K. Fu,; A. C. Overvig,; M. X. Jia,; K. R. Sun,; N. N. Shi,; H. Zhou,; X. H. Xiao,; N. F. Yu,; Y. Yang, Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315-319.
[27]
Y. Ren,; D. C. C. Lam, Low temperature processable ultra-low dielectric porous polyimide for high frequency applications. In International Conference on Electronic Materials and Packaging, 2006, pp 1-5.
[28]
T. Tanaka,; N. Kawakami,; T. Hirano,; Y. Fukumoto,; T. Suzuki,; K. Kanamori,; K. Nakanishi, Porous Methylsiloxane gel thick film for millimeter-wave antenna substrate prepared by gap filling method. Mater. Res. Soc. 2006, 888, .
[29]
B. Notario,; J. Pinto,; R. Verdejo,; M. A. Rodríguez-Pérez, Dielectric behavior of porous PMMA: From the micrometer to the nanometer scale. Polymer 2016, 107, 302-305.
[30]
S. Yin,; L. M. Pan,; K. Huang,; T. Qiu,; J. Yang, Porous Si3N4 ceramics with hierarchical pore structures prepared by gelcasting using DMAA as gelling agent and PS as pore-forming agent. J. Alloys Compd. 2019, 805, 69-77.
[31]
Y. S. Sun,; Z. H. Yang,; D. L. Cai,; Q. Li,; H. L. Li,; S. J. Wang,; D. C. Jia,; Y. Zhou, Mechanical, dielectric and thermal properties of porous boron nitride/silicon oxynitride ceramic composites prepared by pressureless sintering. Ceram. Int. 2017, 43, 8230-8235.
[32]
N. Kawakami,; Y. Fukumoto,; T. Kinoshita,; K. Suzuki,; K. I. Inoue, Preparation of highly porous silica aerogel thin film by supercritical drying. Jpn. J. Appl. Phys. 2000, 39, L182.
[33]
S. H. Hyun,; T. Y. Kim,; G. S. Kim,; H. H. Park, Synthesis of Low-k porous silica films via freeze drying. J. Mater. Sci. Lett. 2000, 19, 1863-1866.
[34]
D. G. Dobó,; D. Berkesi,; Á. Kukovecz, Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene. J. Mol. Struct. 2017, 1140, 83-88.
[35]
O. D. Velev,; T. A. Jede,; R. F. Lobo,; A. M. Lenhoff, Porous silica via colloidal crystallization. Nature 1997, 389, 447-448.
[36]
D. B. Kuang,; T. Brezesinski,; B. Smarsly, Hierarchical porous silica materials with a trimodal pore system using surfactant templates. J. Am. Chem. Soc. 2004, 126, 10534-10535.
[37]
P. S. Pálvölgyi,; M. Nelo,; O. Pitkänen,; J. Peräntie,; H. Liimatainen,; S. Myllymäki,; H. Jantunen,; K. Kordas, Ultra-low permittivity porous silica-cellulose nanocomposite substrates for 6G telecommunication. Nanotechnology 2020, 31, 435203.
[38]
O. Pitkänen,; J. Tolvanen,; I. Szenti,; Á. Kukovecz,; J. Hannu,; H. Jantunen,; K. Kordas, Lightweight hierarchical carbon nanocomposites with highly efficient and tunable electromagnetic interference shielding properties. ACS Appl. Mater. Interfaces 2019, 11, 19331-19338.
[39]
T. N. Pham,; T. Sharifi,; R. Sandström,; W. Siljebo,; A. Shchukarev,; K. Kordas,; T. Wågberg,; J. P. Mikkola, Robust hierarchical 3D carbon foam electrode for efficient water electrolysis. Sci. Rep. 2017, 7, 6112.
[40]
K. Kordas,; O. Pitkänen, Piezoresistive carbon foams in sensing applications. Front. Mater. 2019, 6, 93.
[41]
G. Q. Hu,; W. Y. Li,; J. N. Xu,; G. J. He,; Y. Y. Ge,; Y. S. Pan,; J. R. Wang,; B. D. Yao, Substantially reduced crystallization temperature of SBA-15 mesoporous silica in NaNO3 molten salt. Mater. Lett. 2016, 170, 179-182.
[42]
R. S. Darling,; I. M. Chou,; R. J. Bodnar, An occurrence of metastable cristobalite in high-pressure garnet granulite. Science 1997, 276, 91-93.
[43]
I. M. Joni,; L. Nulhakim,; M. Vanitha,; C. Panatarani, Characteristics of crystalline silica (SiO2) Particles prepared by simple solution method using sodium silicate (Na2SiO3) precursor. J. Phys. Conf. Ser. 2018, 1080, 012006.
[44]
J. Mitra,; M. Ghosh,; R. K. Bordia,; A. Sharma, Photoluminescent electrospun submicron fibers of hybrid organosiloxane and derived silica. RSC Adv. 2013, 3, 7591-7600.
[45]
M. Z. Lu,; W. Z. Li,; E. R. Brown, Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures. Opt. Lett. 2011, 36, 1071-1073.
[46]
Y. H. Zhu,; S. Vegesna,; V. Kuryatkov,; M. Holtz,; M. Saed,; A. A. Bernussi, Terahertz bandpass filters using double-stacked metamaterial layers. Opt. Lett. 2012, 37, 296-298.
[47]
V. A. Markel, Introduction to the Maxwell Garnett approximation: Tutorial. J. Opt. Soc. Am. A 2016, 33, 1244-1256.
Nano Research
Pages 1450-1456
Cite this article:
Pálvölgyi PS, Sebők D, Szenti I, et al. Lightweight porous silica foams with extreme-low dielectric permittivity and loss for future 6G wireless communication technologies. Nano Research, 2021, 14(5): 1450-1456. https://doi.org/10.1007/s12274-020-3201-2
Topics:

962

Views

50

Downloads

22

Crossref

22

Web of Science

24

Scopus

2

CSCD

Altmetrics

Received: 31 July 2020
Revised: 01 October 2020
Accepted: 15 October 2020
Published: 05 January 2021
© The Author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return