[1]
X. Zhang,; S. W. Liu,; Y. P. Zang,; R. R. Liu,; G. Q. Liu,; G. Z. Wang,; Y. X. Zhang,; H. M. Zhang,; H. J. Zhao, Co/Co9S8@S,N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy 2016, 30, 93-102.
[2]
J. H. Wang,; W. Cui,; Q. Liu,; Z. C. Xing,; A. M. Asiri,; X. P. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215 heter
[3]
Z. W. Seh,; J. Kibsgaard,; C. F. Dickens,; I. Chorkendorff,; J. K. Nørskov,; T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
[4]
M. I. Jamesh, Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. J. Power Sources 2016, 333, 213-236.
[5]
S. Y. Chen,; Y. H. Zheng,; S. W. Wang,; X. M. Chen, Ti/RuO2-Sb2O5-SnO2 electrodes for chlorine evolution from seawater. Chem. Eng. J. 2011, 172, 47-51.
[6]
W. J. Luo,; Z. S. Yang,; Z. S. Li,; J. Y. Zhang,; J. G. Liu,; Z. Y. Zhao,; Z. Q. Wang,; S. C. Yan,; T. Yu,; Z. G. Zou, Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci. 2011, 4, 4046-4051.
[7]
S. Kim,; G. X. Piao,; D. S. Han,; H. K. Shon,; H. Park, Solar desalination coupled with water remediation and molecular hydrogen production: A novel solar water-energy nexus. Energy Environ. Sci. 2018, 11, 344-353.
[8]
Y. C. Huang,; L. Hu,; R. Liu,; Y. W. Hu,; T. Z. Xiong,; W. T. Qiu,; M. S. Balogun,; A. L. Pan,; Y. X. Tong, Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr(oxy) oxides for efficient hydrogen production in alkaline, seawater and acidic media. Appl. Catal. B: Environ. 2019, 251, 181-194.
[9]
W. R. Leow,; Y. Lum,; A. Ozden,; Y. H. Wang,; D. H. Nam,; B. Chen,; J. Wicks,; T. T. Zhuang,; F. W. Li,; D. Sinton, et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 2020, 368, 1228-1233.
[10]
H. J. Yin,; Y. H. Dou,; S. Chen,; Z. J. Zhu,; P. R. Liu,; H. J. Zhao 2D electrocatalysts for converting earth-abundant simple molecules into value-added commodity chemicals: Recent progress and perspectives. Adv. Mater. 2020, 32, 1904870.
[11]
A. P. Amrute,; G. O. Larrazábal,; C. Mondelli,; J. Pérez-Ramírez, CuCrO2 delafossite: A stable copper catalyst for chlorine production. Angew. Chem., Int. Ed. 2013, 125, 9954le copp
[12]
E. Mostafa,; P. Reinsberg,; S. Garcia-Segura,; H. Baltruschat, Chlorine species evolution during electrochlorination on boron-doped diamond anodes: In-situ electrogeneration of Cl2, Cl2O and ClO2. Electrochim. Acta 2018, 281, 831-840.
[13]
H. Over, Atomic scale insights into electrochemical versus gas phase oxidation of HCl over RuO2-based catalysts: A comparative review. Electrochim. Acta 2013, 93, 314-333.
[14]
C. W. Li,; Y. Sun,; F. Hess,; I. Djerdj,; J. Sann,; P. Voepel,; P. Cop,; Y. L. Guo,; B. M. Smarsly,; H. Over, Catalytic HCl oxidation reaction: Stabilizing effect of Zr-doping on CeO2 nano-rods. Appl. Catal. B: Environ. 2018, 239, 628-635.
[15]
K. K. Feng,; C. W. Li,; Y. L. Guo,; W. C. Zhan,; B. Q. Ma,; B. W. Chen,; M. Q. Yuan,; G. Z. Lu, An efficient Cu-K-La/γ-Al2O3 catalyst for catalytic oxidation of hydrogen chloride to chlorine. Appl. Catal. B: Environ. 2015, 164, 483-487.
[16]
S. Kumari,; R. T. White,; B. Kumar,; J. M. Spurgeon, Solar hydrogen production from seawater vapor electrolysis. Energy Environ. Sci. 2016, 9, 1725-1733.
[17]
S. Dresp,; F. Dionigi,; M. Klingenhof,; P. Strasser, Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933-942.
[18]
X. Zhang,; G. Q. Liu,; C. J. Zhao,; G. Z. Wang,; Y. X. Zhang,; H. M. Zhang,; H. J. Zhao, Highly efficient electrocatalytic oxidation of urea on a Mn-incorporated Ni(OH)2/carbon fiber cloth for energy-saving rechargeable Zn-air batteries. Chem. Commun. 2017, 53, 10711-10714.
[19]
X. Zhang,; Y. Y. Liu,; Q. Z. Xiong,; G. Q. Liu,; C. J. Zhao,; G. Z. Wang,; Y. X. Zhang,; H. M. Zhang,; H. J. Zhao, Vapour-phase hydrothermal synthesis of Ni2P nanocrystallines on carbon fiber cloth for high-efficiency H2 production and simultaneous urea decomposition. Electrochim. Acta 2017, 254, 44-49.
[20]
H. Ha,; K. Jin,; S. Park,; K. G. Lee,; K. H. Cho,; H. Seo,; H. Y. Ahn,; Y. H. Lee,; K. T. Nam, Highly selective active chlorine generation electrocatalyzed by Co3O4 nanoparticles: Mechanistic investigation through in situ electrokinetic and spectroscopic analyses. J. Phys. Chem. Lett. 2019, 10, 1226-1233.
[21]
K. Cho,; M. R. Hoffmann, BixTi1-xOz functionalized heterojunction anode with an enhanced reactive chlorine generation efficiency in dilute aqueous solutions. Chem. Mater. 2015, 27, 2224-2233.
[22]
F. F. Zhang,; X. D. Gu,; S. J. Zheng,; H. F. Yuan,; J. P. Li,; X. G. Wang, Highly catalytic flexible RuO2 on carbon fiber cloth network for boosting chlorine evolution reaction. Electrochim. Acta 2019, 307, 385-392.
[23]
Q. Z. Xiong,; Y. Wang,; P. F. Liu,; L. R. Zheng,; G. Z. Wang,; H. G. Yang,; P. K. Wong,; H. M. Zhang,; H. J. Zhao, Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Adv. Mater. 2018, 30, 1801450.
[24]
H. S. Lu,; H. M. Zhang,; R. R. Liu,; X. Zhang,; H. J. Zhao,; G. Z. Wang, Macroscale cobalt-MOFs derived metallic Co nanoparticles embedded in N-doped porous carbon layers as efficient oxygen electrocatalysts. Appl. Surf. Sci. 2017, 392, 402-409.
[25]
X. Zhang,; R. R. Liu,; Y. P. Zang,; G. Q. Liu,; G. Z. Wang,; Y. X. Zhang,; H. M. Zhang,; H. J. Zhao, Co/CoO nanoparticles immobilized on Co-N-doped carbon as trifunctional electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Commun. 2016, 52, 5946-5949.
[26]
Y. Y. Liu,; G. S. Han,; X. Y. Zhang,; C. C. Xing,; C. X. Du,; H. Q. Cao,, B. J. Li, Co-Co3O4@carbon core-shells derived from metal-organic framework nanocrystals as efficient hydrogen evolution catalysts. Nano Res. 2017, 10, 3035-3048.
[27]
H. Tian,; X. Y. Liu,; L. B. Dong,; X. M. Ren,; H. Liu,; C. A. H. Price,; Y. Li,; G. X. Wang,; Q. H. Yang,; J. Liu, Enhanced hydrogenation performance over hollow structured Co-CoOx@N-C Capsules. Adv. Sci. 2019, 6, 1900807.
[28]
W. Lu,; J. L. Shen,; P. Zhang,; Y. J. Zhong,; Y. Hu,; X. W. Lou, Construction of CoO/Co-Cu-S hierarchical tubular heterostructures for hybrid supercapacitors. Angew. Chem., Int. Ed. 2019, 58, 15441-15447.
[29]
O. Scialdone, Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: A simple theoretical model including direct and indirect oxidation processes at the anodic surface. Electrochim. Acta 2009, 54, 6140-6147.
[30]
R. K. B. Karlsson,; A. Cornell, Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 2016, 116, 2982-3028.
[31]
J. G. Vos,; T. A. Wezendonk,; A. W. Jeremiasse,; M. T. M. Koper, MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. J. Am. Chem. Soc. 2018, 140, 10270-10281.
[32]
H. Elderfield,; M. J. Greaves, The rare earth elements in seawater. Nature 1982, 296, 214-219.
[33]
D. Shao,; W. Yan,; L. Cao,; X. L. Li,; H. Xu, High-performance Ti/Sb-SnO2/Pb3O4 electrodes for chlorine evolution: Preparation and characteristics. J. Hazard. Mater. 2014, 267, 238-244.