[1]
K. L. Ding,; A. Gulec,; A. M. Johnson,; N. M. Schweitzer,; G. D. Stucky,; L. D. Marks,; P. C. Stair, Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 2015, 350, 189-192.
[2]
S. Z. Zhao,; Y. F. Wen,; X. J. Liu,; X. Y. Pen,; F. Lü,; F. Y. Gao,; X. Z. Xie,; C. C. Du,; H. H. Yi,; D. J. Kang, et al. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 2020, 13, 1544-1551.
[3]
B. T. Qiao,; A. Q. Wang,; X. F. Yang,; L. F. Allard,; Z. Jiang,; Y. T. Cui,; J. Y. Liu,; J. Li,; T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.
[4]
J. Zhang,; X. Wu,; W. C. Cheong,; W. X. Chen,; R. Lin,; J. Li,; L. R. Zheng,; W. S. Yan,; L. Gu,; C. Chen, et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat. Commun. 2018, 9, 1002.
[5]
J. W. Wan,; W. X. Chen,; C. Y. Jia,; L. R. Zheng,; J. C. Dong,; X. S. Zheng,; Y. Wang,; W. S. Yan,; C. Chen,; Q. Peng, et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.
[6]
J. C. Liu,; Y. G. Wang,; J. Li, Toward rational design of oxide-supported single-atom catalysts: Atomic dispersion of gold on ceria. J. Am. Chem. Soc. 2017, 139, 6190-6199.
[7]
M. Yang,; S. Li,; Y. Wang,; J. A. Herron,; Y. Xu,; L. F. Allard,; S. Lee,; J. Huang,; M. Mavrikakis,; M. Flytzani-Stephanopoulos, Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 2014, 346, 1498-1501.
[8]
H. Yan,; H. Cheng,; H. Yi,; Y. Lin,; T. Yao,; C. L. Wang,; J. J. Li,; S. Q. Wei,; J. L. Lu, Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484-10487.
[9]
G. Vilé,; D. Albani,; M. Nachtegaal,; Z. P. Chen,; D. Dontsova,; M. Antonietti,; N. López,; J. Pérez-Ramírez, A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265-11269.
[10]
N. H. Fu,; X. Liang,; Z. Li,; W. X. Chen,; Y. Wang,; L. R. Zheng,; Q. H. Zhang,; C. Chen,; D. S. Wang,; Q. Peng, et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947-951.
[11]
S. J. Wei,; A. Li,; J. C. Liu,; Z. Li,; W. X. Chen,; Y. Gong,; Q. H. Zhang,; W. C. Cheong,; Y. Wang,; L. R. Zheng, et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856-861.
[12]
J. Jones,; H. F. Xiong,; A. T. DeLaRiva,; E. J. Peterson,; H. Pham,; S. R. Challa,; G. Qi,; S. Oh,; M. H. Wiebenga,; X. I. Pereira Hernández, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150-154.
[13]
Z. C. Zhuang,; Q. Kang,; D. S. Wang,; Y. D. Li, Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856-1866.
[14]
Y. Pan,; C. Zhang,; Y. Lin,; Z. Liu,; M. M. Wang,; C. Chen, Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci. China Mater. 2020, 63, 921-948.
[15]
F. R. Lucci,; J. L. Liu,; M. D. Marcinkowski,; M. Yang,; L. F. Allard,; M. Flytzani-Stephanopoulos,; E. C. H. Sykes, Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. Nat. Commun. 2015, 6, 8550.
[16]
X. Y. Li,; H. P. Rong,; J. T. Zhang,; D. S. Wang,; Y. D. Li, Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[17]
N. Q. Zhang,; C. L. Ye,; H. Yan,; L. C. Li,; H. He,; D. S. Wang,; Y. D. Li, Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165-3182.
[18]
Q. Xu,; C. X. Guo,; S. B. Tian,; J. Zhang,; W. X. Chen,; W. C. Cheong,; L. Gu,; L. R. Zheng,; J. P. Xiao,; Q. Liu, et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci. China Mater. 2020, 63, 972-981.
[19]
L. DeRita,; J. Resasco,; S. Dai,; A. Boubnov,; H. V. Thang,; A. S. Hoffman,; I. Ro,; G. W. Graham,; S. R. Bare,; G. Pacchioni, et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 2019, 18, 746-751.
[20]
T. F. Li,; J. J. Liu,; Y. Song,; F. Wang, Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions. ACS Catal. 2018, 8, 8450-8458.
[21]
G. S. Parkinson,; Z. Novotny,; G. Argentero,; M. Schmid,; J. Pavelec,; R. Kosak,; P. Blaha,; U. Diebold, Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst. Nat. Mater. 2013, 12, 724-728.
[22]
B. L. Wang,; H. Luo,; X. W. Wang,; E. Z. Wang,; Y. F. Sun,; Y. C. Tsai,; J. X. Dong,; P. Liu,; H. L. Li,; Y. Xu, et al. Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors. Nano Res. 2020, 13, 2035-2043.
[23]
J. Cao,; Z. Y. Wang,; R. Wang,; S. Liu,; T. Fei,; L. J. Wang,; T. Zhang, Synthesis of core-shell α-Fe2O3@NiO nanofibers with hollow structures and their enhanced HCHO sensing properties. J. Mater. Chem. A 2015, 3, 5635-5641.
[24]
D. Kukkar,; K. Vellingiri,; R. Kaur,; S. K. Bhardwaj,; A. Deep,; K. H. Kim, Nanomaterials for sensing of formaldehyde in air: Principles, applications, and performance evaluation. Nano Res. 2019, 12, 225-246.
[25]
A. Mirzaei,; S. G. Leonardi,; G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119-15141.
[26]
L. Mei,; J. W. Deng,; X. M. Yin,; M. Zhang,; Q. H. Li,; E. D. Zhang,; Z. Xu,; L. B. Chen,; T. H. Wang, Ultrasensitive ethanol sensor based on 3D aloe-like SnO2. Sens. Actuators B: Chem. 2012, 166-167, 7-11.
[27]
N. Van Hieu,; N. A. P. Duc,; T. Trung,; M. A. Tuan,; N. D. Chien, Gas-sensing properties of tin oxide doped with metal oxides and carbon nanotubes: A competitive sensor for ethanol and liquid petroleum gas. Sens. Actuators B: Chem. 2010, 144, 450-456.
[28]
D. Bao,; P. Gao,; L. Q. Wang,; Y. Wang,; Y. J. Chen,; G. R. Chen,; G. B. Li,; C. Chang,; W. Qin, ZnO nanorod arrays and hollow spheres through a facile room-temperature solution route and their enhanced ethanol gas-sensing properties. ChemPlusChem 2013, 78, 1266-1272.
[29]
F. Paraguay D.,; M. Miki-Yoshida,; J. Morales,; J. Solis,; W. Estrada L., Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films 2000, 373, 137-140.
[30]
N. Kılınç,; E. Şennik,; Z. Z. Öztürk, Fabrication of TiO2 nanotubes by anodization of Ti thin films for VOC sensing. Thin Solid Films 2011, 520, 953-958.
[31]
J. Chen,; L. Xu,; W. Li,; X. Gou, α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17, 582-586.
[32]
S. Yan,; G. T. Zan,; Q. S. Wu, An ultrahigh-sensitivity and selective sensing material for ethanol: α-/γ-Fe2O3 mixed-phase mesoporous nanofibers. Nano Res. 2015, 8, 3673-3686.
[33]
Z. J. Song,; H. M. Chen,; S. S. Bao,; Z. X. Xie,; Q. Kuang,; L. S. Zheng, Nanosheet-assembled, hollowed-out hierarchical γ-Fe2O3 microrods for high-performance gas sensing. J. Mater. Chem. A 2020, 8, 3754-3762.
[34]
W. J. Yan,; X. M. Zeng,; H. Liu,; C. W. Guo,; M. Ling,; H. P. Zhou, Highly reliable and selective ethanol sensor based on α-Fe2O3 nanorhombs working in realistic environments. Chin. Phys. B 2019, 28, 487-493.
[35]
H. L. Tian,; H. Q. Fan,; J. W. Ma,; Z. Y. Liu,; L. T. Ma,; S. H. Lei,; J. W. Fang,; C. B. Long, Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing. J. Hazard. Mater. 2018, 341, 102-111.
[36]
Q. Zhang,; X. X. Qin,; F. P. Duan-Mu,; H. M. Ji,; Z. R. Shen,; X. P. Han,; W. B. Hu, Isolated platinum atoms stabilized by amorphous tungstenic acid: Metal-support interaction for synergistic oxygen activation. Angew. Chem., Int. Ed. 2018, 57, 9351-9356.
[37]
X. H. Jia,; X. J. Yu,; L. X. Xia,; Y. L. Sun,; H. J. Song, Synthesis and characterization of Ag/α-Fe2O3 microspheres and their application to highly sensitive and selective detection of ethanol. Appl. Surf. Sci. 2018, 462, 29-37.
[38]
M. Zhou,; Y. Jiang,; G. Wang,; W. J. Wu,; W. X. Chen,; P. Yu,; Y. Q. Lin,; J. J. Mao,; L. Q. Mao, Single-atom Ni-N4 provides a robust cellular NO sensor. Nat. Commun. 2020, 11, 3188.
[39]
F. B. Gu,; Y. Z. Cui,; D. M. Han,; S. Hong,; M. Flytzani-Stephanopoulos,; Z. H. Wang, Atomically dispersed Pt (II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine. Appl. Catal. B: Environ. 2019, 256, 117809.
[40]
O. Pozdnyakova,; D. Teschner,; A. Wootsch,; J. Kröhnert,; B. Steinhauer,; H. Sauer,; L. Toth,; F. C. Jentoft,; A. Knop-Gericke,; Z. Paál, et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions. J. Catal. 2006, 237, 1-16.
[41]
X. I. Pereira-Hernández,; A. DeLaRiva,; V. Muravev,; D. Kunwar,; H. F. Xiong,; B. Sudduth,; M. Engelhard,; L. Kovarik,; E. J. M. Hensen,; Y. Wang, et al. Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 2019, 10, 1358.
[42]
P. Gruene,; A. Fielicke,; G. Meijer,; D. M. Rayner, The adsorption of CO on group 10 (Ni, Pd, Pt) transition-metal clusters. Phys. Chem. Chem. Phys. 2008, 10, 6144-6149.
[43]
G. Anjum,; R. Kumar,; S. Mollah,; P. Thakur,; S. Gautam,; K. H. Chae, NEXAFS studies of La0.8Bi0.2Fe1-xMnxO3(0.0 ≤ x ≤ 0.4) multiferroic system using X-ray absorption spectroscopy. J. Phys. D: Appl. Phys. 2011, 44, 075403.
[44]
X. H. Liu,; K. Shen,; Y. G. Wang,; Y. Q. Wang,; Y. L. Guo,; Y. Guo,; Z. L. Yong,; G. Z. Lu, Preparation and catalytic properties of Pt supported Fe-Cr mixed oxide catalysts in the aqueous-phase reforming of ethylene glycol. Catal. Commun. 2008, 9, 2316-2318.
[45]
B. B. Chen,; X. B. Zhu,; M. Crocker,; Y. Wang,; C. Shi, FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature. Appl. Catal. B: Environ. 2014, 154-155, 73-81.
[46]
H. S. Wei,; X. Y. Liu,; A. Q. Wang,; L. L. Zhang,; B. T. Qiao,; X. F. Yang,; Y. Q. Huang,; S. Miao,; J. Y. Liu,; T. Zhang, FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.
[47]
G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng.: B 2007, 139, 1-23.
[48]
P. Sun,; Y. X. Cai,; S. S. Du,; X. M. Xu,; L. You,; J. Ma,; F. M. Liu,; X. S. Liang,; Y. F. Sun,; G. Y. Lu, Hierarchical α-Fe2O3/SnO2 semiconductor composites: Hydrothermal synthesis and gas sensing properties. Sens. Actuators B: Chem. 2013, 182, 336-343.
[49]
Y. L. Cheng,; H. X. Guo,; Y. F. Wang,; Y. Zhao,; Y. Li,; L. Liu,; H. Y. Li,; H. J. Duan, Low cost fabrication of highly sensitive ethanol sensor based on Pd-doped α-Fe2O3 porous nanotubes. Mater. Res. Bull. 2018, 105, 21-27.
[50]
L. L. Li,; Y. Cheah,; Y. Ko,; P. Teh,; G. Wee,; C. Wong,; S. J. Peng,; M. Srinivasan, The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties. J. Mater. Chem. A 2013, 1, 10935-10941.