[1]
Tyo, J. S.; Goldstein, D. L.; Chenault, D. B.; Shaw, J. A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 2006, 45, 5453-5469.
[2]
Li, Q.; Li, Z. F.; Li, N.; Chen, X. S.; Chen, P. P.; Shen, X. C.; Lu, W. High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity. Sci. Rep. 2014, 4, 6332.
[3]
Li, L.; Xiong, D. Y.; Wen, J.; Li, N.; Zhu, Z. Q. A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector. Infrared Phys. Technol. 2016, 79, 45-49.
[4]
Venuthurumilli, P. K.; Ye, P. D.; Xu, X. F. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 2018, 12, 4861-4867.
[5]
Chen, Y. B.; Chen, C. Y.; Kealhofer, R.; Liu, H. L.; Yuan, Z. Q.; Jiang, L. L.; Suh, J.; Park, J.; Ko, C.; Choe, H. S. et al. Black arsenic: A layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 2018, 30, 1800754.
[6]
Chu, F. H.; Chen, M. Y.; Wang, Y.; Xie, Y. Q.; Liu, B. Y.; Yang, Y. H.; An, X. T.; Zhang, Y. Z. A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy. J. Mater. Chem. C 2018, 6, 2509-2514.
[7]
Wang, X. T.; Li, Y. T.; Huang, L.; Jiang, X. W.; Jiang, L.; Dong, H. L.; Wei, Z. M.; Li, J. B.; Hu, W. P. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J. Am. Chem. Soc. 2017, 139, 14976-14982.
[8]
Zhou, Z. Q.; Cui, Y.; Tan, P. H.; Liu, X. L.; Wei, Z. M. Optical and electrical properties of two-dimensional anisotropic materials. J. Semicond. 2019, 40, 061001.
[9]
Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1169-1177.
[10]
Zhou, W.; Chen, J. Z.; Gao, H.; Hu, T.; Ruan, S. C.; Stroppa, A.; Ren, W. Anomalous and polarization-sensitive photoresponse of Td-WTe2 from visible to infrared light. Adv. Mater. 2019, 31, 1804629.
[11]
Liu, F. C.; Shimotani, H.; Shang, H.; Kanagasekaran, T.; Zólyomi, V.; Drummond, N.; Fal’ko, V. I.; Tanigaki, K. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano 2014, 8, 752-760.
[12]
Liu, S. J.; Xiao, W. B.; Zhong, M. Z.; Pan, L. F.; Wang, X. T.; Deng, H. X.; Liu, J.; Li, J. B.; Wei, Z. M. Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3). Nanotechnology 2018, 29, 184002.
[13]
Wang, X. T.; Wu, K. D.; Blei, M.; Wang, Y.; Pan, L. F.; Zhao, K.; Shan, C. X.; Lei, M.; Cui, Y.; Chen, B. et al. Highly polarized photoelectrical response in vdW ZrS3 nanoribbons. Adv. Elect. Mater. 2019, 5, 1900419.
[14]
Li, L.; Han, W.; Pi, L. J.; Niu, P.; Han, J. B.; Wang, C. L.; Su, B.; Li, H. Q.; Xiong, J.; Bando, Y. et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat 2019, 1, 54-73.
[15]
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[16]
Hong, T.; Chamlagain, B.; Lin, W. Z.; Chuang, H. J.; Pan, M. H.; Zhou, Z. X.; Xu, Y. Q. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 2014, 6, 8978-8983.
[17]
Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707-713.
[18]
Zhou, Z. Q.; Long, M. S.; Pan, L. F.; Wang, X. T.; Zhong, M. Z.; Blei, M.; Wang, J. L.; Fang, J. Z.; Tongay, S.; Hu, W. D. et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano 2018, 12, 12416-12423.
[19]
Tian, Z.; Guo, C. L.; Zhao, M. X.; Li, R. R.; Xue, J. M. Two-dimensional SnS: A phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano 2017, 11, 2219-2226.
[20]
Lin, S. R.; Carvalho, A.; Yan, S. C.; Li, R.; Kim, S.; Rodin, A.; Carvalho, L.; Chan, E. M.; Wang, X.; Castro Neto, A. H. et al. Accessing valley degree of freedom in bulk Tin(II) sulfide at room temperature. Nat. Commun. 2018, 9, 1455.
[21]
Zhang, Z. D.; Yang, J. H.; Zhang, K.; Chen, S.; Mei, F. H.; Shen, G. Z. Anisotropic photoresponse of layered 2D SnS-based near infrared photodetectors. J. Mater. Chem. C 2017, 5, 11288-11293.
[22]
Sun, B. Z.; Ma, Z. J.; He, C.; Wu, K. C. Enhanced thermoelectric performance of layered SnS crystals: The synergetic effect of temperature and carrier concentration. RSC Adv. 2015, 5, 56382-56390.
[23]
Zheng, D. S.; Fang, H. H.; Long, M. S.; Wu, F.; Wang, P.; Gong, F.; Wu, X.; Ho, J. C.; Liao, L.; Hu, W. D. High-performance near-infrared photodetectors based on p-type SnX (X = S, Se) nanowires grown via chemical vapor deposition. ACS Nano 2018, 12, 7239-7245.
[24]
Zhou, X.; Gan, L.; Zhang, Q.; Xiong, X.; Li, H. Q.; Zhong, Z. Q.; Han, J. B.; Zhai, T. Y. High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition. J. Mater. Chem. C 2016, 4, 2111-2116.
[25]
Sohila, S.; Rajalakshmi, M.; Ghosh, C.; Arora, A. K.; Muthamizhchelvan, C. Optical and Raman scattering studies on SnS nanoparticles. J. Alloys Compd. 2011, 509, 5843-5847.
[26]
Gao, W.; Li, Y. T.; Guo, J. H.; Ni, M. X.; Liao, M.; Mo, H. J.; Li, J. B. Narrow-gap physical vapour deposition synthesis of ultrathin SnS1-xSex (0 ≤ x ≤ 1) two-dimensional alloys with unique polarized Raman spectra and high (opto)electronic properties. Nanoscale 2018, 10, 8787-8795.
[27]
Xia, J.; Li, X. Z.; Huang, X.; Mao, N. N.; Zhu, D. D.; Wang, L.; Xu, H.; Meng, X. M. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. Nanoscale 2016, 8, 2063-2070.
[28]
Xu, X. L.; Song, Q. J.; Wang, H. F.; Li, P.; Zhang, K.; Wang, Y. L.; Yuan, K.; Yang, Z. C.; Ye, Y.; Dai, L. In-plane anisotropies of polarized Raman response and electrical conductivity in layered tin selenide. ACS Appl. Mater. Interfaces 2017, 9, 12601-12607.
[29]
Ling, X.; Liang, L. B.; Huang, S. X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Low- frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 2015, 15, 4080-4088.
[30]
Rath, T.; Gury, L.; Sánchez-Molina, I.; Martínez, L.; Haque, S. A. Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells. Chem. Commun. 2015, 51, 10198-10201.
[31]
Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072-1080.