Journal Home > Volume 14 , Issue 7

Thermoelectric (TE) devices can realize the conversion of heat energy and electrical power based on Seebeck effect and Peltier effect. Among them, flexible TE devices have received more attention recently due to their better attachment to various heat sources and aimed components with arbitrary shapes. To improve the performance of flexible TE devices for various application scenarios, large efforts have been made to design the leg patterns, the electrical and thermal contact issues, and the substrate and encapsulation materials for the decrease of heat loss. This paper is to review the advancements about the design of flexible inorganic TE devices over the last decade. Firstly, the design of flexible thin-film TE devices based on the direction of temperature gradient, including the patterns of TE legs, the fabrication methods, and the flexible substrate materials is summarized. Secondly, the design of wearable TE devices that contains common architecture of the module, the substrates and encapsulations, the electrical and thermal contact, and some thin-film based wearable devices with curving TE legs is demonstrated. Thirdly, the characterizations of the flexibility of TE devices and the current applications are outlined. Moreover, some views about the future development for TE devices are proposed.


menu
Abstract
Full text
Outline
About this article

Design of flexible inorganic thermoelectric devices for decrease of heat loss

Show Author's information Defang Ding1,§Fengming Sun1,§Fan Xia1( )Zhiyong Tang2,3
Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan 430074, China
CAS key laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11, Beiyitiao, Zhongguancun, Beijing 100190, China
University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China

§ Defang Ding and Fengming Sun contributed equally to this work.

Abstract

Thermoelectric (TE) devices can realize the conversion of heat energy and electrical power based on Seebeck effect and Peltier effect. Among them, flexible TE devices have received more attention recently due to their better attachment to various heat sources and aimed components with arbitrary shapes. To improve the performance of flexible TE devices for various application scenarios, large efforts have been made to design the leg patterns, the electrical and thermal contact issues, and the substrate and encapsulation materials for the decrease of heat loss. This paper is to review the advancements about the design of flexible inorganic TE devices over the last decade. Firstly, the design of flexible thin-film TE devices based on the direction of temperature gradient, including the patterns of TE legs, the fabrication methods, and the flexible substrate materials is summarized. Secondly, the design of wearable TE devices that contains common architecture of the module, the substrates and encapsulations, the electrical and thermal contact, and some thin-film based wearable devices with curving TE legs is demonstrated. Thirdly, the characterizations of the flexibility of TE devices and the current applications are outlined. Moreover, some views about the future development for TE devices are proposed.

Keywords: pattern, flexible, contact, wearable, thermoelectric device

References(106)

[1]
Zhang, L. S.; Lin, S. P.; Hua, T.; Huang, B. L.; Liu, S. R.; Tao, X. M. Fiber-based thermoelectric generators: Materials, device structures, fabrication, characterization, and applications. Adv. Energy Mater. 2017, 8, 1700524.
[2]
He, W.; Zhang, G.; Zhang, X. X.; Ji, J.; Li, G. Q.; Zhao, X. D. Recent development and application of thermoelectric generator and cooler. Appl. Energy 2015, 143, 1-25.
[3]
Riffat, S. B.; Ma, X. L. Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 2003, 23, 913-935.
[4]
Dai, D.; Zhou, Y. X.; Liu, J. Liquid metal based thermoelectric generation system for waste heat recovery. Renew. Energy 2011, 36, 3530-3536.
[5]
Tao, X. M. Handbook of Smart Textiles; Springer: Singapore, 2015; pp 287-289.
[6]
Karthikeyan, V.; Surjadi, J. U.; Wong, J. C. K.; Kannan, V.; Lam, K. H.; Chen, X. F.; Lu, Y.; Roy, V. A. L. Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting. J. Power. Sources 2020, 455, 227983.
[7]
Harman, T. C.; Walsh, M. P.; Laforge, B. E.; Turner, G. W. Nanostructured thermoelectric materials. J. Electron. Mater. 2005, 34, L19-L22.
[8]
Vining, C. B. An inconvenient truth about thermoelectrics. Nat. Mater. 2009, 8, 83-85.
[9]
Amatya, R.; Ram, R. J. Trend for thermoelectric materials and their earth abundance. J. Electron. Mater. 2012, 41, 1011-1019.
[10]
Pu, X.; Li, L. X.; Liu, M. M.; Jiang, C. Y.; Du, C. H.; Zhao, Z. F.; Hu, W. G.; Wang, Z. L. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 2016, 28, 98-105.
[11]
Scholdt, M.; Do, H.; Lang, J.; Gall, A.; Colsmann, A.; Lemmer, U.; Koenig, J. D.; Winkler, M.; Boettner, H. Organic semiconductors for thermoelectric applications. J. Electron. Mater. 2010, 39, 1589-1592.
[12]
Kim, G. H.; Shao, L.; Zhang, K.; Pipe, K. P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 2013, 12, 719-723.
[13]
Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S., Fahlman, M.; Berggren, M.; Crispin, X. Optimization of the thermoelectric figure of merit in the conducting polymer poly (3,4-ethylenedioxythiophene). Nat. Mater. 2011, 10, 429-433.
[14]
Liang, L. X.; Deng, Y.; Wang, Y.; Gao, H. L.; Cui, J. L. Scalable solution assembly of nanosheets into high-performance flexible Bi0.5Sb1.5Te3 thin films for thermoelectric energy conversion. J. Nanopart. Res. 2014, 16, 2575.
[15]
Cao, Z.; Koukharenko, E.; Torah, R. N.; Tudor, J.; Beeby, S. P. Flexible screen printed thick film thermoelectric generator with reduced material resistivity. J. Phys. Conf. Ser. 2014, 557, 012016.
[16]
Kim, S. J.; Lee, H. E.; Choi, H.; Kim, Y.; We, J. H.; Shin, J. S.; Lee, K. J.; Cho, B. J. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano 2016, 10, 10851-10857.
[17]
Wang, Y. C.; Guo, X. T.; Shi, Y. G.; Mei, D. Q. Self-powered wearable ultraviolet index detector using a flexible thermoelectric generator. J. Micromech. Microeng. 2019, 29, 045002.
[18]
Shi, X. L.; Zheng, K.; Hong, M.; Liu, W. D.; Moshwan, R.; Wang, Y.; Qu, X. L.; Chen, Z. G.; Zou, J. Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe via inducing intensive crystal imperfections and defect phonon scattering. Chem. Sci. 2018, 9, 7376-7389.
[19]
Yoo, D.; Kim, J.; Kim, J. H. Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):Poly(4-styrenesulfonate) (PEDOT: PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 2014, 7, 717-730.
[20]
Varghese, T.; Hollar, C.; Richardson, J.; Kempf, N.; Han, C.; Gamarachchi, P.; Estrada, D.; Mehta, R. J.; Zhang, Y. L. High- performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals. Sci. Rep. 2016, 6, 33135.
[21]
Li, S. H.; Toprak, M. S.; Soliman H. M. A.; Zhou, J.; Muhammed, M.; Platzek, D.; Müller, E. Fabrication of nanostructured thermoelectric bismuth telluride thick films by electrochemical deposition. Chem. Mater. 2006, 18, 3627-3633.
[22]
Wang, Y.; Lei, Y.; Shi, X. L.; Shi, X.; Chen, L. D.; Dargusch, M. S.; Zou, J.; Chen, Z. G. Flexible thermoelectric materials and generators: Challenges and innovations. Adv. Mater. 2019, 31, 1807916.
[23]
Yang, J. H.; Caillat, T. Thermoelectric materials for space and automotive power generation. MRS Bull. 2006, 31, 224-229.
[24]
Chen, Z. G.; Han, G.; Yang, L.; Cheng, L. N.; Zou, J. Nanostructured thermoelectric materials: Current research and future challenge. Prog. Nat. Sci.: Mater. Int. 2012, 22, 535-549.
[25]
Yang, Y.; Lin, Z. H.; Hou, T.; Zhang, F.; Wang, Z. L. Nanowire-composite based flexible thermoelectric nanogenerators and self- powered temperature sensors. Nano Res. 2012, 5, 888-895.
[26]
Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634-638.
[27]
Du, Y.; Xu, J. Y.; Paul, B.; Eklund, P. Flexible thermoelectric materials and devices. Appl. Mater. Today 2018, 12, 366-388.
[28]
An, H.; Karas, D.; Kim, B. W.; Trabia, S.; Moon, J. Flexible n-type thermoelectric composite films with enhanced performance through interface engineering and post-treatment. Nanotechnology 2018, 29, 275403.
[29]
Zeng, X. L.; Yan, C. Z.; Ren, L. L.; Zhang, T.; Zhou, F. R.; Liang, X. W.; Wang, N.; Sun, R.; Xu, J. B.; Wong, C. P. Silver telluride nanowire assembly for high-performance flexible thermoelectric film and its application in self-powered temperature sensor. Adv. Electron. Mater. 2019, 5, 1800612.
[30]
Chung, D. Y.; Hogan, T.; Brazis, P.; Rocci-Lane, M.; Kannewurf, C.; Bastea, M.; Uher, C.; Kanatzidis, M. G. CsBi4Te6: A high-performance thermoelectric material for low-temperature applications. Science 2000, 287, 1024-1027.
[31]
Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105-114.
[32]
Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457-1461.
[33]
Yue, R. R.; Xu, J. K. Poly(3, 4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review. Synth. Met. 2012, 162, 912-917.
[34]
Zhang, Q.; Sun, Y. M.; Xu, W.; Zhu, D. B. Organic thermoelectric materials: Emerging green energy materials converting heat to electricity directly and efficiently. Adv. Mater. 2014, 26, 6829-6851.
[35]
Bubnova, O.; Crispin, X. Towards polymer-based organic thermoelectric generators. Energy Environ. Sci. 2012, 5, 9345-9362.
[36]
Dong, X. Y.; Xiong, S. X.; Luo, B. W.; Ge, R.; Li, Z. F.; Li, J.; Zhou, Y. H. Flexible and transparent organic-inorganic hybrid thermoelectric modules. ACS Appl. Mater. Interfaces 2018, 10, 26687-26693.
[37]
Jin, H. L.; Li, J.; Iocozzia, J.; Zeng, X.; Wei, P. C.; Yang, C.; Li, N.; Liu, Z. P.; He, J. H.; Zhu, T. J. et al. Hybrid organic-inorganic thermoelectric materials and devices. Angew. Chem., Int. Ed. 2019, 58, 15206-15226.
[38]
We, J. H.; Kim, S. J.; Cho, B. J. Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator. Energy 2014, 73, 506-512.
[39]
Min, Y. H.; Roh, J. W.; Yang, H.; Park, M.; Kim, S. I.; Hwang, S.; Lee, S. M.; Lee, K. H.; Jeong, U. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 Nanoflakes and enhanced thermoelectric properties of their Nanocomposites. Adv. Mater. 2013, 25, 1425-1429.
[40]
Zhao, W. Y.; Fan, S. F.; Xiao, N.; Liu, D. Y.; Tay, Y. Y.; Yu, C.; Sim, D.; Hng, H. H.; Zhang, Q. C.; Boey, F. et al. Flexible carbon nanotube papers with improved thermoelectric properties. Energy Environ. Sci. 2012, 5, 5364-5369.
[41]
Choi, J.; Lee, J. Y.; Lee, H.; Park, C. R.; Kim, H. Enhanced thermoelectric properties of the flexible tellurium nanowire film hybridized with single-walled carbon nanotube. Synth. Met. 2014, 198, 340-344.
[42]
de Boor, J.; Gloanec, C.; Kolb, H.; Sottong, R.; Ziolkowski, P.; Müller, E. Fabrication and characterization of nickel contacts for magnesium silicide based thermoelectric generators. J. Alloys Compd. 2015, 632, 348-353.
[43]
Kessler, V.; Dehnen, M.; Chavez, R.; Engenhorst, M.; Stoetzel, J.; Petermann, N.; Hesse, K.; Huelser, T.; Spree, M.; Stiewe, C. et al. Fabrication of high-temperature-stable thermoelectric generator modules based on Nanocrystalline silicon. J. Electron. Mater. 2014, 43, 1389-1396.
[44]
Sahin, A. Z.; Yilbas, B. S. The influence of operating and device parameters on the maximum efficiency and the maximum output power of thermoelectric generator. Int. J. Energy Res. 2012, 36, 111-119.
[45]
Twaha, S.; Zhu, J.; Yan, Y. Y.; Li, B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renew. Sust. Energy Rev. 2016, 65, 698-726.
[46]
Ding, D. F.; Sun, F. M.; Xia, F.; Tang, Z. Y. A high-performance and flexible thermoelectric generator based on the solution-processed composites of reduced graphene oxide nanosheets and bismuth telluride nanoplates. Nanoscale Adv. 2020, 2, 3244-3251.
[47]
Du, Y.; Cai, K. F.; Shen, S. Z.; Donelsonand, R.; Xu, J. Y.; Wang, H. X.; Lin, T. Multifold enhancement of the output power of flexible thermoelectric generators made from cotton fabrics coated with conducting polymer. RSC Adv. 2017, 7, 43737-43742.
[48]
Liu, K.; Tang, X. B.; Liu, Y. P.; Yuan, Z. C.; Li, J. Q.; Xu, Z. H.; Zhang, Z. R.; Chen, W. High-performance and integrated design of thermoelectric generator based on concentric filament architecture. J. Power Sources 2018, 393, 161-168.
[49]
Siddique, A. R. M.; Mahmud, S.; Van Heyst, B. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew. Sust. Energy Rev. 2017, 73, 730-744.
[50]
Orrill, M.; LeBlanc, S. Printed thermoelectric materials and devices: Fabrication techniques, advantages, and challenges. J. Appl. Polym. Sci. 2017, 134, 44256-44271.
[51]
He, R.; Schierning, G.; Nielsch, K. Thermoelectric devices: A review of devices, architectures, and contact optimization. Adv. Mater. Technol. 2018, 3, 1700256.
[52]
Li, C. C.; Drymiotis, F.; Liao, L. L.; Hung, H. T.; Ke, J. H.; Liu, C. K.; Kao, C. R.; Snyder, G. J. Interfacial reactions between PbTe- based thermoelectric materials and Cu and Ag bonding materials. J. Mater. Chem. C 2015, 3, 10590-10596.
[53]
Li, C. C.; Jiang, F. X.; Liu, C. C.; Liu, P. P.; Xu, J. K. Present and future thermoelectric materials toward wearable energy harvesting. Appl. Mater. Today 2019, 15, 543-557.
[54]
Nozariasbmarz, A.; Collins, H.; Dsouza, K.; Polash, M. H.; Hosseini, M.; Hyland, M.; Liu, J.; Malhotra, A.; Ortiz, F. M.; Mohaddes, F. et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl. Energy 2020, 258, 114069.
[55]
Yamamuro, H.; Hatsuta, N.; Wachi, M.; Takei, Y.; Takashiri, M. Combination of electrodeposition and transfer processes for flexible thin-film thermoelectric generators. Coatings 2018, 8, 22.
[56]
Lu, Z. Y.; Layani, M.; Zhao, X. X.; Tan, L. P.; Sun, T.; Fan, S. F.; Yan, Q. Y.; Magdassi, S.; Hng, H. H. Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small 2014, 10, 3551-3554.
[57]
Cao, Z.; Tudor, M. J.; Torah, R. N.; Beeby, S. P. Screen printable flexible BiTe-SbTe-based composite thermoelectric materials on textiles for wearable applications. IEEE Trans. Electron Dev. 2016, 63, 4024-4030.
[58]
Ou, C. L.; Sangle, A. L.; Datta, A.; Jing, Q. S.; Busolo, T.; Chalklen, T.; Narayan, V.; Kar-Narayan, S. Fully printed organic-inorganic nanocomposites for flexible thermoelectric applications. ACS Appl. Mater. Interfaces 2018, 10, 19580-19587.
[59]
Francioso, L.; De Pascali, C.; Farella, I.; Martucci, C.; Cretì, P.; Siciliano, P.; Perrone, A. Flexible thermoelectric generator for ambient assisted living wearable biometric sensors. J. Power Sources 2011, 196, 3239-3243.
[60]
Jung, Y. S.; Jeong, D. H.; Kang, S. B.; Kim, F.; Jeong, M. H.; Lee, K. S.; Son, J. S.; Baik, J. M.; Kim, J. S., Choi, K. J. Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference. Nano Energy 2017, 40, 663-672.
[61]
Wang, Z. L. Energy harvesting for self-powered nanosystems. Nano Res. 2008, 1, 1-8.
[62]
Park, S. H.; Jo, S.; Kwon, B.; Kim, F.; Ban, H. W.; Lee, J. E.; Gu, D. H.; Lee, S. H.; Hwang, Y.; Kim, J. S. et al. High-performance shape-engineerable thermoelectric painting. Nat. Commun. 2016, 7, 13403.
[63]
Weber, J.; Potje-Kamloth, K.; Haase, F.; Detemple, P.; Völklein, F.; Doll. T. Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sensor. Actuat. A Phys. 2006, 132, 325-330.
[64]
Kim, S. L.; Choi, K.; Tazebay, A.; Yu, C. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity. ACS. Nano 2014, 8, 2377-2386.
[65]
Bharti, M.; Jha, P.; Singh, A.; Chauhan, A. K.; Misra, S.; Yamazoe, M.; Debnath, A. K.; Marumoto, K.; Muthe, K. P.; Aswal, D. K. Scalable free-standing polypyrrole films for wrist-band type flexible thermoelectric power generator. Energy 2019, 176, 853-860.
[66]
Chen, A.; Madan, D.; Wright, P. K.; Evans, J. W. Dispenser-printed planar thick-film thermoelectric energy generators. J. Micromech. Microeng. 2011, 21, 104006.
[67]
Navone, C.; Soulier, M.; Plissonnier, M.; Seiler A. L. Development of (Bi, Sb)2(Te, Se)3-based thermoelectric modules by a screen-printing process. J. Electron. Mater. 2010, 39, 1755-1759.
[68]
Lee, H. B.; We, J. H.; Yang, H. J.; Kim, K.; Choi, K. C.; Cho, B. J. Thermoelectric properties of screen-printed ZnSb film. Thin Solid Films 2011, 519, 5441-5443.
[69]
Nuthongkum, P.; Sakulkalavek, A.; Sakdanuphab, R. RSM base study of the effect of argon gas flow rate and annealing temperature on the [Bi]: [Te] ratio and thermoelectric properties of flexible Bi-Te thin film. J. Electron. Mater. 2017, 46, 2900-2907.
[70]
Fan, P.; Fan, W. F.; Zheng, Z. H.; Zhang, Y.; Luo, J. T.; Liang, G. X.; Zhang, D. P. Thermoelectric properties of zinc antimonide thin film deposited on flexible polyimide substrate by RF magnetron sputtering. J. Mater. Sci. 2014, 25, 5060-5065.
[71]
Shi, X.; Chen, H. Y.; Hao, F.; Liu, R. H.; Wang, T.; Qiu, P. F.; Burkhardt, U.; Grin, Y.; Chen, L. D. Room-temperature ductile inorganic semiconductor. Nat. Mater. 2018, 17, 421-426.
[72]
Madan, D.; Wang, Z. Q.; Chen, A.; Juang, R. C.; Keist, J.; Wright, P. K.; Evans, J. W. Enhanced performance of dispenser printed MA n-type Bi2Te3 composite thermoelectric generators. ACS Appl. Mater. Interfaces 2012, 4, 6117-6124.
[73]
Hou, W. K.; Nie, X. L.; Zhao, W. Y.; Zhou, H. Y.; Mu, X.; Zhu, W. T.; Zhang, Q. J. Fabrication and excellent performances of Bi0.5Sb1.5Te3/ epoxy flexible thermoelectric cooling devices. Nano Energy 2018, 50, 766-776.
[74]
Juntunen, T.; Jussila, H.; Ruoho, M.; Liu, S. H.; Hu, G. H.; Albrow- Owen, T.; Ng, L. W. T.; Howe, R. C. T.; Hasan, T.; Sun, Z. P. et al. Inkjet printed large-area flexible few-layer graphene thermoelectrics. Adv. Funct. Mater. 2018, 28, 1800480.
[75]
Du, Y.; Cai, K. F.; Chen, S.; Wang, H. X.; Shen, S. Z.; Donelson, R.; Lin, T. Thermoelectric fabrics: Toward power generating clothing. Sci. Rep. 2015, 5, 6411.
[76]
Jiao, F.; Di, C. A.; Sun, Y. M.; Sheng, P.; Xu, W.; Zhu, D. B. Inkjet- printed flexible organic thin-film thermoelectric devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s/polymer composites through ball-milling. Philos. Trans. Roy. Soc. A 2014, 372, 20130008.
[77]
Jin, Q.; Shi, W. B.; Zhao, Y.; Qiao, J. X.; Qiu, J. H.; Sun, C.; Lei, H.; Tai, K. P.; Jiang, X. Cellulose fiber-based hierarchical porous bismuth telluride for high-performance flexible and tailorable thermoelectrics. ACS Appl. Mater. Interfaces 2018, 10, 1743-1751.
[78]
Yuan, Z. C.; Tang, X. B.; Xu, Z. H.; Li, J. Q.; Chen, W.; Liu, K.; Liu, Y. P.; Zhang, Z. R. Screen-printed radial structure micro radioisotope thermoelectric generator. Appl. Energy 2018, 225, 746-754.
[79]
Li, J. Q.; Tang, X. B.; Liu, Y. P.; Yuan, Z. C.; Xu, Z. H.; Liu, K. Fan-shaped flexible radioisotope thermoelectric generators based on BixTey and BixSb2-xTey fabricated through electrochemical deposition. Energy Technol. 2019, 7, 1800707.
[80]
Xu, Z. H.; Li, J. Q.; Tang, X. B.; Liu, Y. P.; Jiang, T. X.; Yuan, Z. C.; Liu, K. Electrodeposition preparation and optimization of fan- shaped miniaturized radioisotope thermoelectric generator. Energy 2020, 194, 116873.
[81]
Kim, M. K.; Kim, M. S.; Jo, S. E.; Kim, H. L.; Lee, S. M.; Kim, Y. J. Wearable thermoelectric generator for human clothing applications. In Proceedings of the 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, Barcelona, 2013, pp 1376-1379.
[82]
Mu, E. Z.; Yang, G.; Fu, X. C.; Wang, F. D.; Hu, Z. Y. Fabrication and characterization of ultrathin thermoelectric device for energy conversion. J. Power Sources 2018, 394, 17-25.
[83]
Rojas, J. P.; Conchouso, D.; Arevalo, A.; Singh, D.; Foulds, I. G.; Hussain, M. M. Paper-based origami flexible and foldable thermoelectric nanogenerator. Nano Energy 2017, 31, 296-301.
[84]
Suarez, F.; Parekh, D. P.; Ladd, C.; Vashaee, D.; Dickey, M. D.; Öztürk, M. C. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Appl. Energy 2017, 202, 736-745.
[85]
Hyland, M.; Hunter, H.; Liu, J.; Veety, E.; Vashaee, D. Wearable thermoelectric generators for human body heat harvesting. Appl. Energy 2016, 182, 518-524.
[86]
Myers, A.; Hodges, R.; Jur, J. S. Human and environmental analysis of wearable thermal energy harvesting. Energy Convers. Manage. 2017, 143, 218-226.
[87]
Zhao, X.; Han, W. J.; Zhao, C. S.; Wang, S.; Kong, F. G.; Ji, X. X.; Li, Z. Y.; Shen, X. A. Fabrication of transparent paper-based flexible thermoelectric generator for wearable energy harvester using modified distributor printing technology. ACS Appl. Mater. Interfaces 2019, 11, 10301-10309.
[88]
Lu, Z. S.; Zhang, H. H.; Mao, C. P.; Li, C. M. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Appl. Energy 2016, 164, 57-63.
[89]
Kim, M. K.; Kim, M. S.; Lee, S.; Kim, C.; Kim, Y. J. Wearable thermoelectric generator for harvesting human body heat energy. Smart Mater. Struct. 2014, 23, 105002.
[90]
Siddique, A. R. M.; Rabari, R.; Mahmud, S.; van Heyst, B. Thermal energy harvesting from the human body using Flexible Thermoelectric Generator (FTEG) fabricated by a dispenser printing technique. Energy 2016, 115, 1081-1091.
[91]
Kim, S. J.; We, J. H.; Cho, B. J. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 2014, 7, 1959-1965.
[92]
Wang, Y. C.; Shi, Y. G.; Mei, D. Q.; Chen, Z. C. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Appl. Energy 2018, 215, 690-698.
[93]
Shi, Y. G.; Wang, Y. C.; Mei, D. Q.; Feng, B.; Chen, Z. C. Design and fabrication of wearable thermoelectric generator device for heat harvesting. IEEE Robot. Autom. Lett. 2018, 3, 373-378.
[94]
Liu, H. Y.; Wang, Y. C.; Mei, D. Q.; Shi, Y. G.; Chen, Z. C. Design of a Wearable thermoelectric generator for harvesting human body energy. In Wearable Sensors and Robots. Yang, C. J.; Virk, G. S.; Yang H. Y., Eds.; Springer, Singapore, 2017; pp 55-56.
[95]
Shi, Y. G.; Wang, Y. C.; Mei, D. Q.; Chen, Z. C. Wearable thermoelectric generator with copper foam as the heat sink for body heat harvesting. IEEE Access 2018, 6, 43602-43611.
[96]
Nan, K. W.; Kang, S. D.; Li, K.; Yu, K. J.; Zhu, F.; Wang, J. T.; Dunn, A. C.; Zhou, C. Q.; Xie, Z. Q.; Agne, M. T. et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Sci. Adv. 2018, 4: eaau5849.
[97]
Xu, X. J.; Zuo, Y.; Cai, S.; Tao, X.; Zhang, Z. M.; Zhou, X. F.; He, S. S.; Fang, X. S.; Peng, H. S. Three-dimensional helical inorganic thermoelectric generators and photodetectors for stretchable and wearable electronic devices. J. Mater. Chem. C 2018, 6, 4866-4872.
[98]
Francioso, L.; De Pascali, C.; Taurino, A.; Siciliano, P.; De Risi, A. Wearable and flexible thermoelectric generator with enhanced package. In Proceedings of the SPIE 8763, Smart Sensors, Actuators, and MEMS VI, Grenoble, 2013, pp 876306.
[99]
Sevilla, G. A. T.; Inayat, S. B.; Rojas, J. P.; Hussain, A. M.; Hussain, M. M. Flexible and semi-transparent thermoelectric energy harvesters from low cost bulk silicon (100). Small 2013, 9, 3916-3921.
[100]
Zeng, W.; Tao, X. M.; Lin, S. P.; Lee, C.; Shi, D. L.; Lam, K. H.; Huang, B. L.; Wang, Q. M.; Zhao, Y. Defect-engineered reduced graphene oxide sheets with high electric conductivity and controlled thermal conductivity for soft and flexible wearable thermoelectric generators. Nano Energy 2018, 54, 163-174.
[101]
Dargusch, M.; Liu, W. D.; Chen, Z. G. Thermoelectric generators: Alternative power supply for wearable electrocardiographic systems. Adv. Sci. 2020, 18, 2001362.
[102]
He, M. H.; Lin, Y. J.; Chiu, C. M.; Yang, W. F.; Zhang, B. B.; Yun, D. Q.; Xie, Y. N.; Lin, Z. H. A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nano Energy 2018, 49, 588-595.
[103]
Eom, Y.; Wijethunge, D.; Park, H.; Park, S. H.; Kim, W. Flexible thermoelectric power generation system based on rigid inorganic bulk materials. Appl. Energy 2017, 206, 649-656.
[104]
Chen, B. L.; Kruse, M.; Xu, B.; Tutika, R.; Zheng, W.; Bartlett, M. D.; Wu, Y.; Claussen, J. C. Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts. Nanoscale 2019, 11, 5222-5230.
[105]
Kato, K.; Hatasako, Y.; Kashiwagi, M.; Hagino, H.; Adachi, C.; Miyazaki, K. Fabrication of a flexible bismuth telluride power generation module using microporous polyimide films as substrates. J. Electron. Mater. 2014, 43, 1733-1739.
[106]
Kim, S. J.; Choi, H.; Kim, Y.; We, J. H.; Shin, J. S.; Lee, H. E.; Oh, M. W.; Lee, K. J.; Cho, B. J. Post ionized defect engineering of the screen-printed Bi2Te2.7Se0.3 thick film for high performance flexible thermoelectric generator. Nano Energy 2017, 31, 258-263.
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 August 2020
Revised: 07 October 2020
Accepted: 19 October 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors acknowledge financial support from the National Basic Research Program of China (No. 2015CB932600), the National Key R&D Program of China (No. 2017YFA0208000), the National Natural Science Foundation of China (Nos. 21525523, 21802130, 21874121, 21722507 and 21574048), the National Key Basic Research Program of China (Nos. 2014CB931801 and 2016YFA0200700, Z.Y.T.), National Natural Science Foundation of China (Nos. 21475029 and 91427302, Z.Y.T.), Frontier Science Key Project of the Chinese Academy of Sciences (No. QYZDJ-SSW-SLH038, Z.Y.T.), Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201311, Z.Y.T.), CAS-CSIRO Cooperative Research Program (No. GJHZ1503, Z.Y.T.), "Strategic Priority Research Program" of Chinese Academy of Sciences (No. XDA09040100, Z.Y.T.) and K. C. Wong Education Foundation, and Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUG170669).

Return