[1]
G. Iannaccone,; F. Bonaccorso,; L. Colombo,; G. Fiori, Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 2018, 13, 183-191.
[2]
D. Jariwala,; T. J. Marks,; M. C. Hersam, Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170-181.
[3]
Y. Liu,; Y. Huang,; X. F. Duan, van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323-333.
[4]
Y. J. Gong,; J. H. Lin,; X. L. Wang,; G. Shi,; S. D. Lei,; Z. Lin,; X. L. Zou,; G. L. Ye,; R. Vajtai,; B. I. Yakobson, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.
[5]
K. S. Novoselov,; A. Mishchenko,; A. Carvalho,; A. H. C. Neto, 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
[6]
C. R. Dean,; A. F. Young,; I. Meric,; C. Lee,; L. Wang,; S. Sorgenfrei,; K. Watanabe,; T. Taniguchi,; P. Kim,; K. L. Shepard, et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.
[7]
W. Yang,; G. R. Chen,; Z. W. Shi,; C. C. Liu,; L. C. Zhang,; G. B. Xie,; M. Cheng,; D. M. Wang,; R. Yang,; D. X. Shi, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792-797.
[8]
S. J. Haigh,; A. Gholinia,; R. Jalil,; S. Romani,; L. Britnell,; D. C. Elias,; K. S. Novoselov,; L. A. Ponomarenko,; A. K. Geim,; R. Gorbachev, Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 2012, 11, 764-767.
[9]
T. C. Niu,; A. Li, From two-dimensional materials to heterostructures. Prog. Surf. Sci. 2015, 90, 21-45.
[10]
J. W. Wang,; Z. Q. Li,; H. Y. Chen,; G. W. Deng,; X. B. Niu, Recent advances in 2D lateral heterostructures. Nano-Micro Lett. 2019, 11, 48.
[11]
M. Q. Zeng,; Y. Xiao,; J. X. Liu,; K. Yang,; L. Fu, Exploring two- dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018, 118, 6236-6296.
[12]
R. Frisenda,; E. Navarro-Moratalla,; P. Gant,; D. P. De Lara,; P. Jarillo-Herrero,; R. V. Gorbachev,; A. Castellanos-Gomez, Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53-68.
[13]
L. Britnell,; R. V. Gorbachev,; R. Jalil,; B. D. Belle,; F. Schedin,; A. Mishchenko,; T. Georgiou,; M. I. Katsnelson,; L. Eaves,; S. V. Morozov, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947-950.
[14]
T. Georgiou,; R. Jalil,; B. D. Belle,; L. Britnell,; R. V. Gorbachev,; S. V. Morozov,; Y. J. Kim,; A. Gholinia,; S. J. Haigh,; O. Makarovsky, Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100-103.
[15]
M. P. Levendorf,; C. J. Kim,; L. Brown,; P. Y. Huang,; R. W. Havener,; D. A. Muller,; J. Park, Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627-632.
[16]
P. Sutter,; R. Cortes,; J. Lahiri,; E. Sutter, Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett. 2012, 12, 4869-4874.
[17]
L. Liu,; J. Park,; D. A. Siegel,; K. F. McCarty,; K. W. Clark,; W. Deng,; L. Basile,; J. C. Idrobo,; A. P. Li,; G. Gu, Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 2014, 343, 163-167.
[18]
H. S. Wang,; L. X. Chen,; K. Elibol,; L. He,; H. M. Wang,; C. Chen,; C. X. Jiang,; C. Li,; T. R. Wu,; C. X. Cong, et al. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. Nat. Mater., in press, .
[19]
X. D. Duan,; C. Wang,; J. C. Shaw,; R. Cheng,; Y. Chen,; H. L. Li,; X. P. Wu,; Y. Tang,; Q. L. Zhang,; A. L. Pan, et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024-1030.
[20]
C. M. Huang,; S. F. Wu,; A. M. Sanchez,; J. J. P. Peters,; R. Beanland,; J. S. Ross,; P. Rivera,; W. Yao,; D. H. Cobden,; X. D. Xu, Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096-1101.
[21]
Z. W. Zhang,; P. Chen,; X. D. Duan,; K. T. Zang,; J. Luo,; X. F. Duan, Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788-792.
[22]
M. Y. Li,; Y. M. Shi,; C. C. Cheng,; L. S. Lu,; Y. C. Lin,; H. L. Tang,; M. L. Tsai,; C. W. Chu,; K. H. Wei,; J. H. He, et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524-528.
[23]
J. Kang,; S. Tongay,; J. Zhou,; J. B. Li,; J. Q. Wu, Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.
[24]
K. Ye,; L. X. Liu,; Y. J. Liu,; A. M. Nie,; K. Zhai,; J. Y. Xiang,; B. C. Wang,; F. S. Wen,; C. P. Mu,; Z. S. Zhao, et al. Lateral bilayer MoS2-WS2 heterostructure photodetectors with high responsivity and detectivity. Adv. Opt. Mater. 2019, 7, 1900815.
[25]
G. Fiori,; A. Betti,; S. Bruzzone,; G. Iannaccone, Lateral graphene- hBCN heterostructures as a platform for fully two-dimensional transistors. ACS Nano 2012, 6, 2642-2648.
[26]
P. K. Sahoo,; S. Memaran,; Y. Xin,; L. Balicas,; H. R. Gutiérrez, One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 2018, 553, 63-67.
[27]
D. Y. Liu,; J. H. Hong,; X. Wang,; X. B. Li,; Q. L. Feng,; C. W. Tan,; T. Y. Zhai,; F. Ding,; H. L. Peng,; H. Xu, Diverse atomically sharp interfaces and linear dichroism of 1T' ReS2-ReSe2 lateral p-n heterojunctions. Adv. Funct. Mater. 2018, 28, 1804696.
[28]
B. Kiraly,; A. J. Mannix,; M. C. Hersam,; N. P. Guisinger, Graphene- silicon heterostructures at the two-dimensional limit. Chem. Mater. 2015, 27, 6085-6090.
[29]
X. L. Liu,; Z. H. Wei,; I. Balla,; A. J. Mannix,; N. P. Guisinger,; E. Luijten,; M. C. Hersam, Self-assembly of electronically abrupt borophene/organic lateral heterostructures. Sci. Adv. 2017, 3, e1602356.
[30]
J. L. Zhang,; X. Ye,; C. Gu,; C. Han,; S. Sun,; L. Wang,; W. Chen, Non-covalent interaction controlled 2D organic semiconductor films: Molecular self-assembly, electronic and optical properties, and electronic devices. Surf. Sci. Rep. 2020, 75, 100481.
[31]
L. B. Xing,; Z. T. Peng,; W. T. Li,; K. Wu, On controllability and applicability of surface molecular self-assemblies. Acc. Chem. Res. 2019, 52, 1048-1058.
[32]
J. W. Colson,; A. R. Woll,; A. Mukherjee,; M. P. Levendorf,; E. L. Spitler,; V. B. Shields,; M. G. Spencer,; J. Park,; W. R. Dichtel, Oriented 2D covalent organic framework thin films on single-layer graphene. Science 2011, 332, 228-231.
[33]
X. Y. He,; L. Zhang,; R. Chua,; P. K. J. Wong,; A. Arramel,; Y. P. Feng,; S. J. Wang,; D. Z. Chi,; M. Yang,; Y. L. Huang, et al. Selective self-assembly of 2,3-diaminophenazine molecules on MoSe2 mirror twin boundaries. Nat. Commun. 2019, 10, 2847.
[34]
M. Gobbi,; E. Orgiu,; P. Samorì, When 2D materials meet molecules: Opportunities and challenges of hybrid organic/inorganic van der Waals heterostructures. Adv. Mater. 2018, 30, 1706103.
[35]
C. H. Yeh,; Z. Y. Liang,; Y. C. Lin,; H. C. Chen,; T. Fan,; C. H. Ma,; Y. H. Chu,; K. Suenaga,; P. W. Chiu, Graphene-transition metal dichalcogenide heterojunctions for scalable and low-power complementary integrated circuits. ACS Nano 2020, 14, 985-992.
[36]
K. Chen,; X. Wan,; W. G. Xie,; J. X. Wen,; Z. W. Kang,; X. L. Zeng,; H. J, Chen,; J. B. Xu, Lateral built-in potential of monolayer MoS2-WS2 in-plane heterostructures by a shortcut growth strategy. Adv. Mater. 2015, 27, 6431-6437.
[37]
M. Fritton,; D. A. Duncan,; P. S. Deimel,; A. Rastgoo-Lahrood,; F. Allegretti,; J. V. Barth,; W. M. Heckl,; J. Björk,; M. Lackinger, The role of kinetics versus thermodynamics in surface-assisted ullmann coupling on gold and silver surfaces. J. Am. Chem. Soc. 2019, 141, 4824-4832.
[38]
J. L. Zhang,; S. T. Zhao,; C. Han,; Z. Z. Wang,; S. Zhong,; S. Sun,; R. Guo,; X. Zhou,; C. D. Gu,; K. D. Yuan, et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett. 2016, 16, 4903-4908.
[39]
H. Tian,; J. Q. Zhang,; W. Ho,; J. P. Xu,; B. W. Xia,; Y. P. Xia,; J. Fan,; H. Xu,; M. H. Xie,; S. Y. Tong, Two-dimensional metal-phosphorus network. Matter 2020, 2, 111-118.
[40]
S. Sun,; S. T. Zhao,; Y. Z. Luo,; X. Y. Gu,; X. Lian,; A. Tadich,; D. C. Qi,; Z. R. Ma,; Y. Zheng,; C. D. Gu, et al. Designing Kagome lattice from potassium atoms on phosphorus-gold surface alloy. Nano Lett. 2020, 20, 5583-5589.
[41]
S. Sun,; T. Yang,; Z. R. Ma,; H. H. Ding,; S. T. Zhao,; J. Hu,; Q. Xu,; X. Lian,; C. D. Gu,; Z. Y. Li, et al. Experimental realization of one-dimensional metal-inorganic chain: Gold-phosphorus chain. ACS Mater. Lett. 2020, 2, 873-879.
[42]
G. M. Rangger,; O. T. Hofmann,; L. Romaner,; G. Heimel,; B. Bröker,; R. P. Blum,; R. L. Johnson,; N. Koch,; E. Zojer, F4TCNQ on Cu, Ag, and Au as prototypical example for a strong organic acceptor on coinage metals. Phys. Rev. B 2009, 79, 165306.
[43]
E. A. Gaulding,; J. Hao,; H. S. Kang,; E. M. Miller,; S. N. Habisreutinger,; Q. Zhao,; A. Hazarika,; P. C. Sercel,; J. M. Luther,; J. L. Blackburn, Conductivity tuning via doping with electron donating and withdrawing molecules in perovskite CsPbI3 nanocrystal films. Adv. Mater. 2019, 31, 1902250.
[44]
H. Yamane,; N. Kosugi, High hole-mobility molecular layer made from strong electron acceptor molecules with metal adatoms. J. Phys. Chem. Lett. 2017, 8, 5366-5371.
[45]
N. Si,; T. Shen,; D. C. Zhou,; Q. Tang,; Y. X. Jiang,; Q. M. Ji,; H. Huang,; W. Liu,; S. Li,; T. C. Niu, Imaging and dynamics of water hexamer confined in nanopores. ACS Nano 2019, 13, 10622-10630.
[46]
S. T. Zhao,; J. L. Zhang,; W. Chen,; Z. Y. Li, Structure of blue phosphorus grown on Au (111) surface revisited. J. Phys. Chem. C 2019, 124, 2024-2029.
[47]
J. L. Zhang,; S. T. Zhao,; S. Sun,; H. H. Ding,; J. Hu,; Y. L. Li,; Q. Xu,; X. J. Yu,; M. Telychko,; J. Su, et al. Synthesis of monolayer blue phosphorus enabled by silicon intercalation. ACS Nano 2020, 14, 3687-3695.
[48]
D. Gerbert,; F. Maaß,; P. Tegeder, Extended space charge region and unoccupied molecular band formation in epitaxial tetrafluorotetracyanoquinodimethane films. J. Phys. Chem. C 2017, 121, 15696-15701.
[49]
M. N. Faraggi,; N. Jiang,; N. Gonzalez-Lakunza,; A. Langner,; S. Stepanow,; K. Kern,; A. Arnau, Bonding and charge transfer in metal-organic coordination networks on Au (111) with strong acceptor molecules. J. Phys. Chem. C 2012, 116, 24558-24565.
[50]
C. R. Ryder,; J. D. Wood,; S. A. Wells,; M. C. Hersam, Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 2016, 10, 3900-3917.
[51]
Y. L. Huang,; Y. J. Zheng,; Z. B. Song,; D. Z. Chi,; A. T. S. Wee,; S. Y. Quek, The organic-2D transition metal dichalcogenide heterointerface. Chem. Soc. Rev. 2018, 47, 3241-3264.
[52]
J. J. Zhao,; H. S. Liu,; Z. M. Yu,; R. Quhe,; S. Zhou,; Y. Y. Wang,; C. C. Liu,; H. X. Zhong,; N. N. Han,; J. Lu, et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24-151.
[53]
L. Y. Zhu,; E. G. Kim,; Y. P. Yi,; J. L. Bredas, Charge transfer in molecular complexes with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ): A density functional theory study. Chem. Mater. 2011, 23, 5149-5159.
[54]
D. P. Goronzy,; M. Ebrahimi,; F. Rosei,; ; Y. Fang,; S. De Feyter,; S. L. Tait,; C. Wang,; P. H. Beton,; A. T. S. Wee, et al. Supramolecular assemblies on surfaces: Nanopatterning, functionality, and reactivity. ACS Nano 2018, 12, 7445-7481.
[55]
I. Horcas,; R. Fernández,; J. M. Gomez-Rodriguez,; J. Colchero,; J. Gómez-Herrero,; A. M. Baro, WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.
[56]
D. Nečas,; P. Klapetek, Gwyddion: An open-source software for SPM data analysis. Centr. Eur. J. Phys. 2012, 10, 181-188.
[57]
G. Kresse,; J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[58]
G. Kresse,; J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.
[59]
P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.
[60]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[61]
A. Tkatchenko,; M. Scheffler, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005.
[62]
H. J. Monkhorst,; J. D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
[63]
J. Tersoff,; D. R. Hamann, Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 1983, 50, 1998-2001.