Journal Home > Volume 14 , Issue 3

Lateral two-dimensional (2D) heterostructures have great potential for device engineering at the atomistic scale. Their production is hindered by difficulties in obtaining atomically sharp interface free from intermixture. Here we report the continuous construction of a lateral heterostructure using blue phosphorene and tetrafluoro-tetracyanoquinodimethane (F4TCNQ) as the building blocks. The lateral heterostructure is achieved by linking the semiconducting F4TCNQ-Au metal organic framework and the metallic blue phosphorene-Au network via Au adatoms. The structural and electronic properties of the heterostructure have been investigated by means of scanning tunneling microscopy and spectroscopy (STM/S), complemented by density functional theory (DFT) calculations, demonstrating a structurally and electrically abrupt interface. Our approach offers the possibility of high flexibility and control that can be extended to other metal-organic species and 2D materials, establishing a foundation for the development of atomically thin in-plane superlattice and devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Lateral epitaxial growth of two-dimensional heterostructure linked by gold adatoms

Show Author's information Nan Si1,§Tao Shen2,§Xinyi Liu2Dechun Zhou1Qingmin Ji1Wei Liu2Shuang Li2( )Tianchao Niu3( )
Herbert Gleiter Institute of Nanoscience, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

§ Nan Si and Tao Shen contributed equally to this work.

Abstract

Lateral two-dimensional (2D) heterostructures have great potential for device engineering at the atomistic scale. Their production is hindered by difficulties in obtaining atomically sharp interface free from intermixture. Here we report the continuous construction of a lateral heterostructure using blue phosphorene and tetrafluoro-tetracyanoquinodimethane (F4TCNQ) as the building blocks. The lateral heterostructure is achieved by linking the semiconducting F4TCNQ-Au metal organic framework and the metallic blue phosphorene-Au network via Au adatoms. The structural and electronic properties of the heterostructure have been investigated by means of scanning tunneling microscopy and spectroscopy (STM/S), complemented by density functional theory (DFT) calculations, demonstrating a structurally and electrically abrupt interface. Our approach offers the possibility of high flexibility and control that can be extended to other metal-organic species and 2D materials, establishing a foundation for the development of atomically thin in-plane superlattice and devices.

Keywords: two-dimensional materials, density functional theory, self-assembly, scanning tunneling microscopy, phosphorene

References(63)

[1]
G. Iannaccone,; F. Bonaccorso,; L. Colombo,; G. Fiori, Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 2018, 13, 183-191.
[2]
D. Jariwala,; T. J. Marks,; M. C. Hersam, Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170-181.
[3]
Y. Liu,; Y. Huang,; X. F. Duan, van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323-333.
[4]
Y. J. Gong,; J. H. Lin,; X. L. Wang,; G. Shi,; S. D. Lei,; Z. Lin,; X. L. Zou,; G. L. Ye,; R. Vajtai,; B. I. Yakobson, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.
[5]
K. S. Novoselov,; A. Mishchenko,; A. Carvalho,; A. H. C. Neto, 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
[6]
C. R. Dean,; A. F. Young,; I. Meric,; C. Lee,; L. Wang,; S. Sorgenfrei,; K. Watanabe,; T. Taniguchi,; P. Kim,; K. L. Shepard, et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.
[7]
W. Yang,; G. R. Chen,; Z. W. Shi,; C. C. Liu,; L. C. Zhang,; G. B. Xie,; M. Cheng,; D. M. Wang,; R. Yang,; D. X. Shi, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792-797.
[8]
S. J. Haigh,; A. Gholinia,; R. Jalil,; S. Romani,; L. Britnell,; D. C. Elias,; K. S. Novoselov,; L. A. Ponomarenko,; A. K. Geim,; R. Gorbachev, Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 2012, 11, 764-767.
[9]
T. C. Niu,; A. Li, From two-dimensional materials to heterostructures. Prog. Surf. Sci. 2015, 90, 21-45.
[10]
J. W. Wang,; Z. Q. Li,; H. Y. Chen,; G. W. Deng,; X. B. Niu, Recent advances in 2D lateral heterostructures. Nano-Micro Lett. 2019, 11, 48.
[11]
M. Q. Zeng,; Y. Xiao,; J. X. Liu,; K. Yang,; L. Fu, Exploring two- dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018, 118, 6236-6296.
[12]
R. Frisenda,; E. Navarro-Moratalla,; P. Gant,; D. P. De Lara,; P. Jarillo-Herrero,; R. V. Gorbachev,; A. Castellanos-Gomez, Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53-68.
[13]
L. Britnell,; R. V. Gorbachev,; R. Jalil,; B. D. Belle,; F. Schedin,; A. Mishchenko,; T. Georgiou,; M. I. Katsnelson,; L. Eaves,; S. V. Morozov, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947-950.
[14]
T. Georgiou,; R. Jalil,; B. D. Belle,; L. Britnell,; R. V. Gorbachev,; S. V. Morozov,; Y. J. Kim,; A. Gholinia,; S. J. Haigh,; O. Makarovsky, Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100-103.
[15]
M. P. Levendorf,; C. J. Kim,; L. Brown,; P. Y. Huang,; R. W. Havener,; D. A. Muller,; J. Park, Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627-632.
[16]
P. Sutter,; R. Cortes,; J. Lahiri,; E. Sutter, Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett. 2012, 12, 4869-4874.
[17]
L. Liu,; J. Park,; D. A. Siegel,; K. F. McCarty,; K. W. Clark,; W. Deng,; L. Basile,; J. C. Idrobo,; A. P. Li,; G. Gu, Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 2014, 343, 163-167.
[18]
H. S. Wang,; L. X. Chen,; K. Elibol,; L. He,; H. M. Wang,; C. Chen,; C. X. Jiang,; C. Li,; T. R. Wu,; C. X. Cong, et al. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. Nat. Mater., in press, .
[19]
X. D. Duan,; C. Wang,; J. C. Shaw,; R. Cheng,; Y. Chen,; H. L. Li,; X. P. Wu,; Y. Tang,; Q. L. Zhang,; A. L. Pan, et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024-1030.
[20]
C. M. Huang,; S. F. Wu,; A. M. Sanchez,; J. J. P. Peters,; R. Beanland,; J. S. Ross,; P. Rivera,; W. Yao,; D. H. Cobden,; X. D. Xu, Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096-1101.
[21]
Z. W. Zhang,; P. Chen,; X. D. Duan,; K. T. Zang,; J. Luo,; X. F. Duan, Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788-792.
[22]
M. Y. Li,; Y. M. Shi,; C. C. Cheng,; L. S. Lu,; Y. C. Lin,; H. L. Tang,; M. L. Tsai,; C. W. Chu,; K. H. Wei,; J. H. He, et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524-528.
[23]
J. Kang,; S. Tongay,; J. Zhou,; J. B. Li,; J. Q. Wu, Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.
[24]
K. Ye,; L. X. Liu,; Y. J. Liu,; A. M. Nie,; K. Zhai,; J. Y. Xiang,; B. C. Wang,; F. S. Wen,; C. P. Mu,; Z. S. Zhao, et al. Lateral bilayer MoS2-WS2 heterostructure photodetectors with high responsivity and detectivity. Adv. Opt. Mater. 2019, 7, 1900815.
[25]
G. Fiori,; A. Betti,; S. Bruzzone,; G. Iannaccone, Lateral graphene- hBCN heterostructures as a platform for fully two-dimensional transistors. ACS Nano 2012, 6, 2642-2648.
[26]
P. K. Sahoo,; S. Memaran,; Y. Xin,; L. Balicas,; H. R. Gutiérrez, One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 2018, 553, 63-67.
[27]
D. Y. Liu,; J. H. Hong,; X. Wang,; X. B. Li,; Q. L. Feng,; C. W. Tan,; T. Y. Zhai,; F. Ding,; H. L. Peng,; H. Xu, Diverse atomically sharp interfaces and linear dichroism of 1T' ReS2-ReSe2 lateral p-n heterojunctions. Adv. Funct. Mater. 2018, 28, 1804696.
[28]
B. Kiraly,; A. J. Mannix,; M. C. Hersam,; N. P. Guisinger, Graphene- silicon heterostructures at the two-dimensional limit. Chem. Mater. 2015, 27, 6085-6090.
[29]
X. L. Liu,; Z. H. Wei,; I. Balla,; A. J. Mannix,; N. P. Guisinger,; E. Luijten,; M. C. Hersam, Self-assembly of electronically abrupt borophene/organic lateral heterostructures. Sci. Adv. 2017, 3, e1602356.
[30]
J. L. Zhang,; X. Ye,; C. Gu,; C. Han,; S. Sun,; L. Wang,; W. Chen, Non-covalent interaction controlled 2D organic semiconductor films: Molecular self-assembly, electronic and optical properties, and electronic devices. Surf. Sci. Rep. 2020, 75, 100481.
[31]
L. B. Xing,; Z. T. Peng,; W. T. Li,; K. Wu, On controllability and applicability of surface molecular self-assemblies. Acc. Chem. Res. 2019, 52, 1048-1058.
[32]
J. W. Colson,; A. R. Woll,; A. Mukherjee,; M. P. Levendorf,; E. L. Spitler,; V. B. Shields,; M. G. Spencer,; J. Park,; W. R. Dichtel, Oriented 2D covalent organic framework thin films on single-layer graphene. Science 2011, 332, 228-231.
[33]
X. Y. He,; L. Zhang,; R. Chua,; P. K. J. Wong,; A. Arramel,; Y. P. Feng,; S. J. Wang,; D. Z. Chi,; M. Yang,; Y. L. Huang, et al. Selective self-assembly of 2,3-diaminophenazine molecules on MoSe2 mirror twin boundaries. Nat. Commun. 2019, 10, 2847.
[34]
M. Gobbi,; E. Orgiu,; P. Samorì, When 2D materials meet molecules: Opportunities and challenges of hybrid organic/inorganic van der Waals heterostructures. Adv. Mater. 2018, 30, 1706103.
[35]
C. H. Yeh,; Z. Y. Liang,; Y. C. Lin,; H. C. Chen,; T. Fan,; C. H. Ma,; Y. H. Chu,; K. Suenaga,; P. W. Chiu, Graphene-transition metal dichalcogenide heterojunctions for scalable and low-power complementary integrated circuits. ACS Nano 2020, 14, 985-992.
[36]
K. Chen,; X. Wan,; W. G. Xie,; J. X. Wen,; Z. W. Kang,; X. L. Zeng,; H. J, Chen,; J. B. Xu, Lateral built-in potential of monolayer MoS2-WS2 in-plane heterostructures by a shortcut growth strategy. Adv. Mater. 2015, 27, 6431-6437.
[37]
M. Fritton,; D. A. Duncan,; P. S. Deimel,; A. Rastgoo-Lahrood,; F. Allegretti,; J. V. Barth,; W. M. Heckl,; J. Björk,; M. Lackinger, The role of kinetics versus thermodynamics in surface-assisted ullmann coupling on gold and silver surfaces. J. Am. Chem. Soc. 2019, 141, 4824-4832.
[38]
J. L. Zhang,; S. T. Zhao,; C. Han,; Z. Z. Wang,; S. Zhong,; S. Sun,; R. Guo,; X. Zhou,; C. D. Gu,; K. D. Yuan, et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett. 2016, 16, 4903-4908.
[39]
H. Tian,; J. Q. Zhang,; W. Ho,; J. P. Xu,; B. W. Xia,; Y. P. Xia,; J. Fan,; H. Xu,; M. H. Xie,; S. Y. Tong, Two-dimensional metal-phosphorus network. Matter 2020, 2, 111-118.
[40]
S. Sun,; S. T. Zhao,; Y. Z. Luo,; X. Y. Gu,; X. Lian,; A. Tadich,; D. C. Qi,; Z. R. Ma,; Y. Zheng,; C. D. Gu, et al. Designing Kagome lattice from potassium atoms on phosphorus-gold surface alloy. Nano Lett. 2020, 20, 5583-5589.
[41]
S. Sun,; T. Yang,; Z. R. Ma,; H. H. Ding,; S. T. Zhao,; J. Hu,; Q. Xu,; X. Lian,; C. D. Gu,; Z. Y. Li, et al. Experimental realization of one-dimensional metal-inorganic chain: Gold-phosphorus chain. ACS Mater. Lett. 2020, 2, 873-879.
[42]
G. M. Rangger,; O. T. Hofmann,; L. Romaner,; G. Heimel,; B. Bröker,; R. P. Blum,; R. L. Johnson,; N. Koch,; E. Zojer, F4TCNQ on Cu, Ag, and Au as prototypical example for a strong organic acceptor on coinage metals. Phys. Rev. B 2009, 79, 165306.
[43]
E. A. Gaulding,; J. Hao,; H. S. Kang,; E. M. Miller,; S. N. Habisreutinger,; Q. Zhao,; A. Hazarika,; P. C. Sercel,; J. M. Luther,; J. L. Blackburn, Conductivity tuning via doping with electron donating and withdrawing molecules in perovskite CsPbI3 nanocrystal films. Adv. Mater. 2019, 31, 1902250.
[44]
H. Yamane,; N. Kosugi, High hole-mobility molecular layer made from strong electron acceptor molecules with metal adatoms. J. Phys. Chem. Lett. 2017, 8, 5366-5371.
[45]
N. Si,; T. Shen,; D. C. Zhou,; Q. Tang,; Y. X. Jiang,; Q. M. Ji,; H. Huang,; W. Liu,; S. Li,; T. C. Niu, Imaging and dynamics of water hexamer confined in nanopores. ACS Nano 2019, 13, 10622-10630.
[46]
S. T. Zhao,; J. L. Zhang,; W. Chen,; Z. Y. Li, Structure of blue phosphorus grown on Au (111) surface revisited. J. Phys. Chem. C 2019, 124, 2024-2029.
[47]
J. L. Zhang,; S. T. Zhao,; S. Sun,; H. H. Ding,; J. Hu,; Y. L. Li,; Q. Xu,; X. J. Yu,; M. Telychko,; J. Su, et al. Synthesis of monolayer blue phosphorus enabled by silicon intercalation. ACS Nano 2020, 14, 3687-3695.
[48]
D. Gerbert,; F. Maaß,; P. Tegeder, Extended space charge region and unoccupied molecular band formation in epitaxial tetrafluorotetracyanoquinodimethane films. J. Phys. Chem. C 2017, 121, 15696-15701.
[49]
M. N. Faraggi,; N. Jiang,; N. Gonzalez-Lakunza,; A. Langner,; S. Stepanow,; K. Kern,; A. Arnau, Bonding and charge transfer in metal-organic coordination networks on Au (111) with strong acceptor molecules. J. Phys. Chem. C 2012, 116, 24558-24565.
[50]
C. R. Ryder,; J. D. Wood,; S. A. Wells,; M. C. Hersam, Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 2016, 10, 3900-3917.
[51]
Y. L. Huang,; Y. J. Zheng,; Z. B. Song,; D. Z. Chi,; A. T. S. Wee,; S. Y. Quek, The organic-2D transition metal dichalcogenide heterointerface. Chem. Soc. Rev. 2018, 47, 3241-3264.
[52]
J. J. Zhao,; H. S. Liu,; Z. M. Yu,; R. Quhe,; S. Zhou,; Y. Y. Wang,; C. C. Liu,; H. X. Zhong,; N. N. Han,; J. Lu, et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24-151.
[53]
L. Y. Zhu,; E. G. Kim,; Y. P. Yi,; J. L. Bredas, Charge transfer in molecular complexes with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ): A density functional theory study. Chem. Mater. 2011, 23, 5149-5159.
[54]
D. P. Goronzy,; M. Ebrahimi,; F. Rosei,; ; Y. Fang,; S. De Feyter,; S. L. Tait,; C. Wang,; P. H. Beton,; A. T. S. Wee, et al. Supramolecular assemblies on surfaces: Nanopatterning, functionality, and reactivity. ACS Nano 2018, 12, 7445-7481.
[55]
I. Horcas,; R. Fernández,; J. M. Gomez-Rodriguez,; J. Colchero,; J. Gómez-Herrero,; A. M. Baro, WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.
[56]
D. Nečas,; P. Klapetek, Gwyddion: An open-source software for SPM data analysis. Centr. Eur. J. Phys. 2012, 10, 181-188.
[57]
G. Kresse,; J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[58]
G. Kresse,; J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.
[59]
P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.
[60]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[61]
A. Tkatchenko,; M. Scheffler, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005.
[62]
H. J. Monkhorst,; J. D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
[63]
J. Tersoff,; D. R. Hamann, Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 1983, 50, 1998-2001.
File
12274_2020_3194_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 August 2020
Revised: 15 October 2020
Accepted: 15 October 2020
Published: 01 March 2021
Issue date: March 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work is financially supported by the Natural Science Foundation of Jiangsu Province (No. BK20181297), the National Natural Science Foundation of China (Nos. 21875108, 21403282, and 51602155), and the Fundamental Research Funds for Central Universities (Nos. 30919011257, 30917015106, and 30918011340). T. C. N. thanks Dr. Jialin Zhang for helpful discussions on the structure of BlueP-Au network.

Return