Journal Home > Volume 14 , Issue 7

Twisted van der Waals homo- and hetero-structures have aroused great attentions due to their unique physical properties, providing a new platform to explore the novel two-dimensional (2D) condensed matter physics. The robust dependence of phonon vibrations and electronic band structures on the twist angle has been intensively observed in transition metal dichalcogenide (TMD) homo-structures. However, the effects of twist angle on the lattice vibrational properties in the TMD heterostructures have not caused enough attention. Here, we report the distinct evolutions of Raman scattering and the underlying interlayer interactions in the twisted WS2/MoS2 heterostructures. The shifts and linewidths of E2g(Γ) and A1g(Γ) phonon modes are found to be twist angle dependent. In particular, analogous to that of the twisted TMD homostructures, the frequency separations between E2g(Γ) and A1g(Γ) modes of MoS2 and WS2 in the twisted heterostructures varying with twist angle correlate with the interlayer mechanical coupling, essentially originating from the spacing-related repulsion between sulfur atoms. Moreover, the opposite shift behaviors and broadening of A1g(Γ) modes caused by charge transfer are also observed in the twisted heterostructures. The calculated interlayer distances and band alignment of twisted WS2/MoS2 through density functional theory further evidence our interpretations on the roles of the interlayer mechanical coupling and charge transfer in variations of Raman features. Such understanding and controlling of interlayer interaction through the stacking orientation are significant for future optoelectronic device design based on the newly emerged 2D heterostructures.

File
12274_2020_3193_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 August 2020
Revised: 09 October 2020
Accepted: 15 October 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

We thank Dr. Jiaxu Yan from Institute of Advanced Materials, Nanjing Tech. University and Dr. Juan Xia from University of Science and Technology, China for their helpful discussions. This work was mainly supported by the National Key R&D Program of China (Grant No. 2018YFA0703700) and the Ministry of Education, Singapore, MOE Tier 1 RG93/19, NRF-CRP-21-2018-0007, MOE2018-T2-2-072, and MOE2019- T2-1-004. C. X. C. also thanks the support of the National Natural Science Foundation of China (Grant No. 61774040), the Shanghai Municipal Science and Technology Commission (Grant No. 18JC1410300), the Fudan University-CIOMP Joint Fund (Grant No. FC2018-002), the National Young 1000 Talent Plan of China, and the Shanghai Municipal Natural Science Foundation (No. 16ZR1402500). J. Z. S. appreciates the support of the Fundamental Research Funds for the Central Universities of China, National Natural Science Foundation of China under Grant No. 61904151, Natural Science Foundation of Shaanxi under Grant No. 2020JM-108, and the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (No. 2020GXLH-Z-020). Z. L. acknowledges the support of MOE Tier 1 grant RG164/15, Tier 2 grant MOE2016-T2-2-153, and MOE2015-T2-2-007, and Singapore National Research Foundation under NRF award No. NRF-NRFF2013-08. W. H. Y. acknowledges the support of the National Natural Science Foundations of China (Grant No. 61704040). This research was also supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LGG19F040003).

Return