Journal Home > Volume 14 , Issue 5

Biological ion channels, as fundamental units participating in various daily behaviors with incredible mass transportation and signal transmission, triggered booming researches on manufacturing their artificial prototypes. Biomimetic ion channel with the nanometer scale for smart responding functions has been successfully realized in sorts of materials by employing state-of-art nanotechnology. Ion track-etching technology, as crucial branches of fabricating solid-state nanochannels, exhibits outstanding advantages, such as easy fabrication, low cost, and high customization. To endow the nanochannel with smart responsibility, various modification methods are developed, including chemical grafting, non-covalent adsorption, and electrochemical deposition, enriching the reservoir of accessible stimuli-responses combinations, whereas were limited by their relatively lengthy and complex procedure. Here, based on the electric field induced self-assembly of polyelectrolytes, a universal customizable modifying strategy has been proposed, which exhibits superiorities in their functionalization with convenience and compatibility. By using this protocol, the channels’ ionic transport behaviors could be easily tuned, and even the specific ionic or molecular responding could be realized with superior performance. This strategy surely accelerates the nanochannels functionalization into fast preparing, high efficiency, and large-scale application scenarios.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A universal functionalization strategy for biomimetic nanochannel via external electric field assisted non-covalent interaction

Show Author's information Yunfei Teng1,2Xiang-Yu Kong1 ( )Pei Liu1,2Yongchao Qian1Yuhao Hu1Lin Fu1,2Weiwen Xin1,2Lei Jiang1,2Liping Wen1,2( )
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Biological ion channels, as fundamental units participating in various daily behaviors with incredible mass transportation and signal transmission, triggered booming researches on manufacturing their artificial prototypes. Biomimetic ion channel with the nanometer scale for smart responding functions has been successfully realized in sorts of materials by employing state-of-art nanotechnology. Ion track-etching technology, as crucial branches of fabricating solid-state nanochannels, exhibits outstanding advantages, such as easy fabrication, low cost, and high customization. To endow the nanochannel with smart responsibility, various modification methods are developed, including chemical grafting, non-covalent adsorption, and electrochemical deposition, enriching the reservoir of accessible stimuli-responses combinations, whereas were limited by their relatively lengthy and complex procedure. Here, based on the electric field induced self-assembly of polyelectrolytes, a universal customizable modifying strategy has been proposed, which exhibits superiorities in their functionalization with convenience and compatibility. By using this protocol, the channels’ ionic transport behaviors could be easily tuned, and even the specific ionic or molecular responding could be realized with superior performance. This strategy surely accelerates the nanochannels functionalization into fast preparing, high efficiency, and large-scale application scenarios.

Keywords: biomimetic, ionic nanofluidics, ionic rectification, solid-state nanopore, nanochannel

References(45)

[1]
E. Gouaux,; R. MacKinnon, Principles of selective ion transport in channels and pumps. Science 2005, 310, 1461-1465.
[2]
D. A. Doyle,; J. M. Cabral,; R. A. Pfuetzner,; A. Kuo,; J. M. Gulbis,; S. L. Cohen,; B. T. Chait,; R. MacKinnon, The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998, 280, 69-77.
[3]
C. Cao,; Y. L. Ying,; Z. L. Hu,; D. F. Liao,; H. Tian,; Y. T. Long, Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nat. Nanotechnol. 2016, 11, 713-718.
[4]
C. Cao,; M. Y. Li,; N. Cirauqui,; Y. Q. Wang,; M. Dal Peraro,; H. Tian,; Y. T. Long, Mapping the sensing spots of aerolysin for single oligonucleotides analysis. Nat. Commun. 2018, 9, 2823.
[5]
X. Y. Wu,; M. B. Wang,; Y. Q. Wang,; M. Y. Li,; Y. L. Ying,; J. Huang,; Y. T. Long, Precise construction and tuning of an aerolysin single-biomolecule interface for single-molecule sensing. CCS Chem. 2019, 1, 304-312.
[6]
J. Clarke,; H. C. Wu,; L. Jayasinghe,; A. Patel,; S. Reid,; H. Bayley, Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 2009, 4, 265-270.
[7]
L. Wen,; L. Jiang, Bio-inspired smart gating nanochannels based on polymer films. Sci. China Chem. 2011, 54, 1537-1546.
[8]
R. X. Duan,; X. D. Lou,; F. Xia, The development of nanostructure assisted isothermal amplification in biosensors. Chem. Soc. Rev. 2016, 45, 1738-1749.
[9]
X. Hou,; W. Guo,; L. Jiang, Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 2011, 40, 2385-2401.
[10]
K. Zhan,; Z. Y. Li,; J. Chen,; Y. Q. Hou,; J. Zhang,; R. Q. Sun,; Z. X. Bu,; L. Y. Wang,; M. Wang,; X. Y. Chen, et al. Tannic acid modified single nanopore with multivalent metal ions recognition and ultra-trace level detection. Nano Today 2020, 33, 100868.
[11]
X. Hou, Smart gating multi-scale pore/channel-based membranes. Adv. Mater. 2016, 28, 7049-7064.
[12]
Y. L. Zhu,; K. Zhan,; X. Hou, Interface design of nanochannels for energy utilization. ACS Nano 2018, 12, 908-911.
[13]
B. Yameen,; M. Ali,; R. Neumann,; W. Ensinger,; W. Knoll,; O. Azzaroni, Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett. 2009, 9, 2788-2793.
[14]
H. C. Zhang,; X. Hou,; L. Zeng,; F. Yang,; L. Li,; D. D. Yan,; Y. Tian,; L. Jiang, Bioinspired artificial single ion pump. J. Am. Chem. Soc. 2013, 135, 16102-16110.
[15]
Q. Liu,; L. P. Wen,; K. Xiao,; H. Lu,; Z. Zhang,; G. H. Xie,; X. Y. Kong,; Z. S. Bo,; L. Jiang, A biomimetic voltage-gated chloride nanochannel. Adv. Mater. 2016, 28, 3181-3186.
[16]
X. M. Shang,; G. H. Xie,; X. Y. Kong,; Z. Zhang,; Y. Q. Zhang,; W. Tian,; L. P. Wen,; L. Jiang, An artificial CO2-driven ionic gate inspired by olfactory sensory neurons in mosquitoes. Adv. Mater. 2017, 29, 1603884.
[17]
P. Li,; G. H. Xie,; P. Liu,; X. Y. Kong,; Y. L. Song,; L. P. Wen,; L. Jiang, Light-driven ATP transmembrane transport controlled by DNA nanomachines. J. Am. Chem. Soc. 2018, 140, 16048-16052.
[18]
P. Liu,; G. H. Xie,; P. Li,; Z. Zhang,; L. S. Yang,; Y. Y. Zhao,; C. C. Zhu,; X. Y. Kong,; L. Jiang,; L. P. Wen, A universal tunable nanofluidic diode via photoresponsive host-guest interactions. NPG Asia Mater. 2018, 10, 849-857.
[19]
L. S. Yang,; Y. C. Qian,; X. Y. Kong,; M. T. Si,; Y. Y. Zhao,; B. Niu,; X. L. Zhao,; Y. Wei,; L. Jiang,; L. P. Wen, Specific recognition of uranyl ion employing a functionalized nanochannel platform for dealing with radioactive contamination. ACS Appl. Mater. Interfaces 2020, 12, 3854-3861.
[20]
K. Xiao,; G. H. Xie,; P. Li,; Q. Liu,; G. L. Hou,; Z. Zhang,; J. Ma,; Y. Tian,; L. P. Wen,; L. Jiang, A biomimetic multi-stimuli-response ionic gate using a hydroxypyrene derivation-functionalized asymmetric single nanochannel. Adv. Mater. 2014, 26, 6560-6565.
[21]
G. Pérez-Mitta,; L. Burr,; J. S. Tuninetti,; C. Trautmann,; M. E. Toimil-Molares,; O. Azzaroni, Noncovalent functionalization of solid-state nanopores via self-assembly of amphipols. Nanoscale 2016, 8, 1470-1478.
[22]
C. Y. Lin,; C. Combs,; Y. S. Su,; L. H. Yeh,; Z. S. Siwy, Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. J. Am. Chem. Soc. 2019, 141, 3691-3698.
[23]
G. Laucirica,; W. A. Marmisolle,; M. E. Toimil-Molares,; C. Trautmann,; O. Azzaroni, Redox-driven reversible gating of solid-state nanochannels. ACS Appl. Mater. Interfaces 2019, 11, 30001-30009.
[24]
G. Laucirica,; V. M. Cayón,; Y. T. Terrones,; M. L. Cortez,; M. E. Toimil-Molares,; C. Trautmann,; W. A. Marmisolle,; O. Azzaroni, Electrochemically addressable nanofluidic devices based on PET nanochannels modified with electropolymerized poly-o-aminophenol films. Nanoscale 2020, 12, 6002-6011.
[25]
P. Apel, Track etching technique in membrane technology. Radiat. Meas. 2001, 34, 559-566.
[26]
P. Y. Apel,; Y. E. Korchev,; Z. Siwy,; R. Spohr,; M. Yoshida, Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact. Mat. Atoms 2001, 184, 337-346.
[27]
G. H. Xie,; K. Xiao,; Z. Zhang,; X. Y. Kong,; Q. Liu,; P. Li,; L. P. Wen,; L. Jiang, A bioinspired switchable and tunable carbonate-activated nanofluidic diode based on a single nanochannel. Angew. Chem., Int. Ed. 2015, 54, 13664-13668.
[28]
P. Li,; G. H. Xie,; X. Y. Kong,; Z. Zhang,; K. Xiao,; L. P. Wen,; L. Jiang, Light-controlled ion transport through biomimetic DNA-based channels. Angew. Chem., Int. Ed. 2016, 55, 15637-15641.
[29]
G. Pérez-Mitta,; A. Albesa,; F. M. Gilles,; M. E. Toimil-Molares,; C. Trautmann,; O. Azzaroni, Noncovalent approach toward the construction of nanofluidic diodes with pH-reversible rectifying properties: Insights from theory and experiment. J. Phys. Chem. C 2017, 121, 9070-9076.
[30]
M. Ali,; B. Yameen,; J. Cervera,; P. Ramírez,; R. Neumann,; W. Ensinger,; W. Knoll,; O. Azzaroni, Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: Insights from theory and experiment. J. Am. Chem. Soc. 2010, 132, 8338-8348.
[31]
G. Pérez-Mitta,; W. A. Marmisolle,; A. G. Albessa,; M. E. Toimil-Molares,; C. Trautmann,; O. Azzaroni, Phosphate-responsive biomimetic nanofluidic diodes regulated by polyamine-phosphate interactions: Insights into their functional behavior from theory and experiment. Small 2018, 14, 1702131.
[32]
G. Pérez-Mitta,; A. S. Peinetti,; M. L. Cortez,; M. E. Toimil-Molares,; C. Trautmann,; O. Azzaroni, Highly sensitive biosensing with solid-state nanopores displaying enzymatically reconfigurable rectification properties. Nano Lett. 2018, 18, 3303-3310.
[33]
J. P. Hsu,; H. H. Wu,; C. Y. Lin,; S. Tseng, Importance of polyelectrolyte modification for rectifying the ionic current in conically shaped nanochannels. Phys. Chem. Chem. Phys. 2017, 19, 5351-5360.
[34]
Z. Siwy,; D. Dobrev,; R. Neumann,; C. Trautmann,; K. Voss, Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal. Appl. Phys. A 2003, 76, 781-785.
[35]
J. Cervera,; B. Schiedt,; R. Neumann,; S. Mafé,; P. Ramirez, Ionic conduction, rectification, and selectivity in single conical nanopores. J. Chem. Phys. 2006, 124, 104706.
[36]
H. S. White,; A. Bund, Mechanism of electrostatic gating at conical glass nanopore electrodes. Langmuir 2008, 24, 12062-12067.
[37]
J. Irigoyen,; S. E. Moya,; J. J. Iturri,; I. Llarena,; O. Azzaroni,; E. Donath, Specific ζ-potential response of layer-by-layer coated colloidal particles triggered by polyelectrolyte ion interactions. Langmuir 2009, 25, 3374-3380.
[38]
E. Donath,; D. Walther,; V. N. Shilov,; E. Knippel,; A. Budde,; K. Lowack,; C. A. Helm,; H. Möhwald, Nonlinear hairy layer theory of electrophoretic fingerprinting applied to consecutive layer by layer polyelectrolyte adsorption onto charged polystyrene latex particles. Langmuir 1997, 13, 5294-5305.
[39]
R. F. Tabor,; F. Grieser,; R. R. Dagastine,; D. Y. C. Chan, The hydrophobic force: Measurements and methods. Phys. Chem. Chem. Phys. 2014, 16, 18065-18075.
[40]
R. A. Treumann,; W. Baumjohann, A note on the entropy force in kinetic theory and black holes. Entropy 2019, 21, 716.
[41]
L. S. Yang,; P. Liu,; C. C. Zhu,; Y. Y. Zhao,; M. M. Yuan,; X. Y. Kong,; L. P. Wen,; L. Jiang, Ion transport regulation through triblock copolymer/PET asymmetric nanochannel membrane: Model system establishment and rectification mapping. Chin. Chem. Lett. 2020, in press, .
[42]
Q. Liu,; K. Xiao,; L. P. Wen,; Y. Dong,; G. H. Xie,; Z. Zhang,; Z. S. Bo,; L. Jiang, A fluoride-driven ionic gate based on a 4-aminophenylboronic acid-functionalized asymmetric single nanochannel. ACS Nano 2014, 8, 12292-12299.
[43]
F. Yan,; X. Y. Ma,; Q. F. Jin,; Y. Tong,; H. L. Tang,; X. Y. Lin,; J. Y. Liu, Phenylboronic acid-functionalized vertically ordered mesoporous silica films for selective electrochemical determination of fluoride ion in tap water. Microchim. Acta 2020, 187, 470.
[44]
G. R. Nie,; Y. Sun,; F. Zhang,; M. M. Song,; D. M. Tian,; L. Jiang,; H. B. Li, Fluoride responsive single nanochannel: Click fabrication and highly selective sensing in aqueous solution. Chem. Sci. 2015, 6, 5859-5865.
[45]
G. Pérez-Mitta,; W. A. Marmisolle,; L. Burr,; M. E. Toimil-Molares,; C. Trautmann,; O. Azzaroni, Proton-gated rectification regimes in nanofluidic diodes switched by chemical effectors. Small 2018, 14, 1703144.
File
12274_2020_3192_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 July 2020
Revised: 21 September 2020
Accepted: 14 October 2020
Published: 15 November 2020
Issue date: May 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The membranes employed in this work are based on an UMAT experiment, performed at the beam line X0 at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany) in the frame of FAIR Phase 0. We thank Yihui Xu and the service station of CAS key laboratory of infection and immunity for technical support during the revision of this manuscript. This work was supported by the National Key R&D Program of China (Nos. 2017YFA0206904 and 2017YFA0206900), the National Natural Science Foundation of China (Nos. 21625303, 21905287, 51673206, and 21988102), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA21010213), Beijing Natural Science Foundation (No. 2194088), and the Key Research Program of the Chinese Academy of Sciences (No. QYZDY-SSW-SLH014).

Return