AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Precise synthesis of N-doped graphitic carbon via chemical vapor deposition to unravel the dopant functions on potassium storage toward practical K-ion batteries

Yu Zhao1,§Zhongti Sun1,§Yuyang Yi1Chen Lu1Menglei Wang1Zhou Xia1Xueyu Lian1Zhongfan Liu1,2( )Jingyu Sun1( )
College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Show Author Information

Graphical Abstract

Abstract

Nitrogen doped carbon is a burgeoning anode candidate for potassium-ion battery (PIBs) owing to its outstanding attributes. It is imperative to grasp further insight into specific effects of different nitrogen dopants in carbon anode toward advanced K-ion storage. However, the prevailing fabrication method is plagued by the fact that considerable variations in the total N-doping concentration occur in the course of regulating the type of nitrogen dopants, incapable of distinguishing the certain roles of them under similar conditions. Herein, throughout the precise preparation of high edge-N doped carbon (HENC) and high graphitic-N doped carbon (HGNC) harnessing basically identical N-doping levels (5.78 at.% for HENC; 5.07 at.% for HGNC) via chemical vapor deposition route, the effects of edge-N and graphitic-N in the carbon anode on K-ion storage are revisited, offering guidance into the design of low-cost and high-performance PIB systems.

Electronic Supplementary Material

Download File(s)
12274_2020_3191_MOESM1_ESM.pdf (5 MB)

References

[1]
W. C. Zhang,; Y. J. Liu,; Z. P. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412.
[2]
H. Yang,; R. Xu,; Y. Yao,; S. F. Ye,; X. F. Zhou,; Y. Yu, Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv. Funct. Mater. 2019, 29, 1809195.
[3]
X. F. Ge,; S. H. Liu,; M. Qiao,; Y. C. Du,; Y. F. Li,; J. C. Bao,; X. S. Zhou, Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew. Chem., Int. Ed. 2019, 58, 14578-14583.
[4]
J. M. Ge,; L. Fan,; J. Wang,; Q. F. Zhang,; Z. M. Liu,; E. J. Zhang,; Q. Liu,; X. Z. Yu,; B. A. Lu, MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801477.
[5]
Y. Y. Yi,; Z. T. Sun,; C. Li,; Z. N. Tian,; C. Lu,; Y. L. Shao,; J. Li,; J. Y. Sun,; Z. F. Liu, Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 2020, 30, 1903878.
[6]
L. Fan,; R. F. Ma,; Q. F. Zhang,; X. X. Jia,; B. A. Lu, Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500-10505.
[7]
L. Li,; L. J. Liu,; Z. Hu,; Y. Lu,; Q. N. Liu,; S. Jin,; Q. Zhang,; S. Zhao,; S. L. Chou, Understanding high-rate K+-solvent Co-intercalation in natural graphite for potassium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 12917-12924.
[8]
Y. Xu,; C. L. Zhang,; M. Zhou,; Q. Fu,; C. X. Zhao,; M. H. Wu,; Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.
[9]
X. H. Yao,; Y. J. Ke,; W. H. Ren,; X. P. Wang,; F. Y. Xiong,; W. Yang,; M. S. Qin,; Q. Li,; L. Q. Mai, Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage. Adv. Energy Mater. 2019, 9, 1900094.
[10]
J. L. Yang,; Z. C. Ju,; Y. Jiang,; Z. Xing,; B. J. Xi,; J. K. Feng,; S. L. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.
[11]
L. Tao,; Y. P. Yang,; H. L. Wang,; Y. L. Zheng,; H. C. Hao,; W. P. Song,; J. Shi,; M. H. Huang,; D. Mitlin, Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms. Energy Stor. Mater. 2020, 27, 212-225.
[12]
Z. C. Ju,; P. Z. Li,; G. Y. Ma,; Z. Xing,; Q. C. Zhuang,; Y. T. Qian, Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Stor. Mater. 2018, 11, 38-46.
[13]
X. Wu,; Y. L. Chen,; Z. Xing,; C. W. K. Lam,; S. S. Pang,; W. Zhang,; Z. C. Ju, Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900343.
[14]
R. Rajagopalan,; Y. G. Tang,; X. B. Ji,; C. K. Jia,; H. Y. Wang, Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.
[15]
H. B. Wang,; T. Maiyalagan,; X. Wang, Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781-794.
[16]
X. Q. Chang,; X. L. Zhou,; X. W. Ou,; C. S. Lee,; J. W. Zhou,; Y. B. Tang, Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 2019, 9, 1902672.
[17]
X. F. Zhou,; L. L. Chen,; W. H. Zhang,; J. W. Wang,; Z. J. Liu,; S. F. Zeng,; R. Xu,; Y. Wu,; S. F. Ye,; Y. Z. Feng, et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2019, 19, 4965-4973.
[18]
W. L. Zhang,; Z. Cao,; W. X. Wang,; E. Alhajji,; A. H. Emwas,; P. M. F. J. Costa,; L. Cavallo,; H. N. Alshareef, A site-selective doping strategy of carbon anodes with remarkable K-ion storage capacity. Angew. Chem., Int. Ed. 2020, 59, 4448-4455.
[19]
F. Xu,; Y. X. Zhai,; E. Zhang,; Q. H. Liu,; G. S. Jiang,; X. S. Xu,; Y. Q. Qiu,; X. M. Liu,; H. Q. Wang,; S. Kaskel, Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets. Angew. Chem., Int. Ed. 2020, 59, 19460-19467.
[20]
M. Zhang,; M. Shoaib,; H. L. Fei,; T. Wang,; J. Zhong,; L. Fan,; L. Wang,; H. Y. Luo,; S. Tan,; Y. Y. Wang, et al. Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv. Energy Mater. 2019, 9, 1901663.
[21]
Y. Liu,; Y. X. Lu,; Y. S. Xu,; Q. S. Meng,; J. C. Gao,; Y. G. Sun,; Y. S. Hu,; B. B. Chang,; C. T. Liu,; A. M. Cao, Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, 2000505.
[22]
L. Lin,; B. Deng,; J. Y. Sun,; H. L. Peng,; Z. F. Liu, Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018, 118, 9281-9343.
[23]
N. Wei,; L. H. Yu,; Z. T. Sun,; Y. Z. Song,; M. L. Wang,; Z. N. Tian,; Y. Xia,; J. S. Cai,; Y. Y. Li,; L. Zhao, et al. Scalable salt-templated synthesis of nitrogen-doped graphene nanosheets toward printable energy storage. ACS Nano 2019, 13, 7517-7526.
[24]
Y. Wang,; J. Y. Huang,; X. B. Chen,; L. Wang,; Z. Z. Ye, Powder metallurgy template growth of 3D N-doped graphene foam as binder-free cathode for high-performance lithium/sulfur battery. Carbon 2018, 137, 368-378.
[25]
C. Lu,; Z. T. Sun,; L. H. Yu,; X. Y. Lian,; Y. Y. Yi,; J. Li,; Z. F. Liu,; S. X. Dou,; J. Y. Sun, Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries. Adv. Energy Mater. 2020, 10, 2001161.
[26]
G. Kresse,; J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[27]
P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[28]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[29]
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.
[30]
G. F. Han,; Z. W. Chen,; J. P. Jeon,; S. J. Kim,; H. J. Noh,; X. M. Shi,; F. Li,; Q. Jiang,; J. B. Baek, Low-temperature conversion of alcohols into bulky nanoporous graphene and pure hydrogen with robust selectivity on CaO. Adv. Mater. 2019, 31, 1807267.
[31]
J. Y. Sun,; Y. B. Chen,; X. Cai,; B. J. Ma,; Z. L. Chen,; M. K. Priydarshi,; K. Chen,; T. Gao,; X. J. Song,; Q. Q. Ji, et al. Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Res. 2015, 8, 3496-3504.
[32]
Y. H. Liu,; J. S. Xue,; T. Zheng,; J. R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 1996, 34, 193-200.
[33]
A. C. Ferrari,; D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235-246.
[34]
M. Tanhaei,; A. R. Mahjoub,; V. Safarifard, Energy-efficient sonochemical approach for the preparation of nanohybrid composites from graphene oxide and metal-organic framework. Inorg. Chem. Commun. 2019, 102, 185-191.
[35]
H. N. He,; D. Sun,; Y. G. Tang,; H. Y. Wang,; M. H. Shao, Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 2019, 23, 233-251.
[36]
T. Granzier-Nakajima,; K. Fujisawa,; V. Anil,; M. Terrones,; Y. T. Yeh, Controlling nitrogen doping in graphene with atomic precision: Synthesis and characterization. Nanomaterials 2019, 9, 425.
[37]
E. Memarzadeh Lotfabad,; P. Kalisvaart,; A. Kohandehghan,; D. Karpuzov,; D. Mitlin, Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li. J. Mater. Chem. A 2014, 2, 19685-19695.
[38]
S. Alvin,; H. S. Cahyadi,; J. Hwang,; W. Chang,; S. K. Kwak,; J. Kim, Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 2020, 10, 2000283.
[39]
T. Schiros,; D. Nordlund,; L. Palova,; D. Prezzi,; L. Y. Zhao,; K. S. Kim,; U. Wurstbauer,; C. Gutierrez,; D. Delongchamp,; C. Jaye, et al. Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett. 2012, 12, 4025-4031.
[40]
L. Lin,; J. Y. Li,; Q. H. Yuan,; Q. C. Li,; J. C. Zhang,; L. Z. Sun,; D. R. Rui,; Z. L. Chen,; K. C. Jia,; M. Z. Wang, et al. Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains. Sci. Adv. 2019, 5, eaaw8337.
[41]
S. Malifarge,; B. Delobel,; C. Delacourt, Experimental and modeling analysis of graphite electrodes with various thicknesses and porosities for high-energy-density Li-ion batteries. J. Electrochem. Soc. 2018, 165, A1275-A1287.
[42]
V. Augustyn,; J. Come,; M. A. Lowe,; J. W. Kim,; P. L. Taberna,; S. H. Tolbert,; H. D. Abruna,; P. Simon,; B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518-522.
[43]
T. Brezesinski,; J. Wang,; S. H. Tolbert,; B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146-151.
[44]
X. Hu,; G. B. Zhong,; J. W. Li,; Y. J. Liu,; J. Yuan,; J. X. Chen,; H. B. Zhan,; Z. H. Wen, Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 2020, 13, 2431-2440.
Nano Research
Pages 1413-1420
Cite this article:
Zhao Y, Sun Z, Yi Y, et al. Precise synthesis of N-doped graphitic carbon via chemical vapor deposition to unravel the dopant functions on potassium storage toward practical K-ion batteries. Nano Research, 2021, 14(5): 1413-1420. https://doi.org/10.1007/s12274-020-3191-0
Topics:

887

Views

39

Crossref

N/A

Web of Science

38

Scopus

8

CSCD

Altmetrics

Received: 25 September 2020
Accepted: 18 October 2020
Published: 23 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return