[1]
W. C. Zhang,; Y. J. Liu,; Z. P. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412.
[2]
H. Yang,; R. Xu,; Y. Yao,; S. F. Ye,; X. F. Zhou,; Y. Yu, Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv. Funct. Mater. 2019, 29, 1809195.
[3]
X. F. Ge,; S. H. Liu,; M. Qiao,; Y. C. Du,; Y. F. Li,; J. C. Bao,; X. S. Zhou, Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew. Chem., Int. Ed. 2019, 58, 14578-14583.
[4]
J. M. Ge,; L. Fan,; J. Wang,; Q. F. Zhang,; Z. M. Liu,; E. J. Zhang,; Q. Liu,; X. Z. Yu,; B. A. Lu, MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801477.
[5]
Y. Y. Yi,; Z. T. Sun,; C. Li,; Z. N. Tian,; C. Lu,; Y. L. Shao,; J. Li,; J. Y. Sun,; Z. F. Liu, Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 2020, 30, 1903878.
[6]
L. Fan,; R. F. Ma,; Q. F. Zhang,; X. X. Jia,; B. A. Lu, Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500-10505.
[7]
L. Li,; L. J. Liu,; Z. Hu,; Y. Lu,; Q. N. Liu,; S. Jin,; Q. Zhang,; S. Zhao,; S. L. Chou, Understanding high-rate K+-solvent Co-intercalation in natural graphite for potassium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 12917-12924.
[8]
Y. Xu,; C. L. Zhang,; M. Zhou,; Q. Fu,; C. X. Zhao,; M. H. Wu,; Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.
[9]
X. H. Yao,; Y. J. Ke,; W. H. Ren,; X. P. Wang,; F. Y. Xiong,; W. Yang,; M. S. Qin,; Q. Li,; L. Q. Mai, Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage. Adv. Energy Mater. 2019, 9, 1900094.
[10]
J. L. Yang,; Z. C. Ju,; Y. Jiang,; Z. Xing,; B. J. Xi,; J. K. Feng,; S. L. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.
[11]
L. Tao,; Y. P. Yang,; H. L. Wang,; Y. L. Zheng,; H. C. Hao,; W. P. Song,; J. Shi,; M. H. Huang,; D. Mitlin, Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms. Energy Stor. Mater. 2020, 27, 212-225.
[12]
Z. C. Ju,; P. Z. Li,; G. Y. Ma,; Z. Xing,; Q. C. Zhuang,; Y. T. Qian, Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Stor. Mater. 2018, 11, 38-46.
[13]
X. Wu,; Y. L. Chen,; Z. Xing,; C. W. K. Lam,; S. S. Pang,; W. Zhang,; Z. C. Ju, Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900343.
[14]
R. Rajagopalan,; Y. G. Tang,; X. B. Ji,; C. K. Jia,; H. Y. Wang, Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.
[15]
H. B. Wang,; T. Maiyalagan,; X. Wang, Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781-794.
[16]
X. Q. Chang,; X. L. Zhou,; X. W. Ou,; C. S. Lee,; J. W. Zhou,; Y. B. Tang, Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 2019, 9, 1902672.
[17]
X. F. Zhou,; L. L. Chen,; W. H. Zhang,; J. W. Wang,; Z. J. Liu,; S. F. Zeng,; R. Xu,; Y. Wu,; S. F. Ye,; Y. Z. Feng, et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2019, 19, 4965-4973.
[18]
W. L. Zhang,; Z. Cao,; W. X. Wang,; E. Alhajji,; A. H. Emwas,; P. M. F. J. Costa,; L. Cavallo,; H. N. Alshareef, A site-selective doping strategy of carbon anodes with remarkable K-ion storage capacity. Angew. Chem., Int. Ed. 2020, 59, 4448-4455.
[19]
F. Xu,; Y. X. Zhai,; E. Zhang,; Q. H. Liu,; G. S. Jiang,; X. S. Xu,; Y. Q. Qiu,; X. M. Liu,; H. Q. Wang,; S. Kaskel, Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets. Angew. Chem., Int. Ed. 2020, 59, 19460-19467.
[20]
M. Zhang,; M. Shoaib,; H. L. Fei,; T. Wang,; J. Zhong,; L. Fan,; L. Wang,; H. Y. Luo,; S. Tan,; Y. Y. Wang, et al. Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv. Energy Mater. 2019, 9, 1901663.
[21]
Y. Liu,; Y. X. Lu,; Y. S. Xu,; Q. S. Meng,; J. C. Gao,; Y. G. Sun,; Y. S. Hu,; B. B. Chang,; C. T. Liu,; A. M. Cao, Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, 2000505.
[22]
L. Lin,; B. Deng,; J. Y. Sun,; H. L. Peng,; Z. F. Liu, Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018, 118, 9281-9343.
[23]
N. Wei,; L. H. Yu,; Z. T. Sun,; Y. Z. Song,; M. L. Wang,; Z. N. Tian,; Y. Xia,; J. S. Cai,; Y. Y. Li,; L. Zhao, et al. Scalable salt-templated synthesis of nitrogen-doped graphene nanosheets toward printable energy storage. ACS Nano 2019, 13, 7517-7526.
[24]
Y. Wang,; J. Y. Huang,; X. B. Chen,; L. Wang,; Z. Z. Ye, Powder metallurgy template growth of 3D N-doped graphene foam as binder-free cathode for high-performance lithium/sulfur battery. Carbon 2018, 137, 368-378.
[25]
C. Lu,; Z. T. Sun,; L. H. Yu,; X. Y. Lian,; Y. Y. Yi,; J. Li,; Z. F. Liu,; S. X. Dou,; J. Y. Sun, Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries. Adv. Energy Mater. 2020, 10, 2001161.
[26]
G. Kresse,; J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[27]
P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[28]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[29]
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.
[30]
G. F. Han,; Z. W. Chen,; J. P. Jeon,; S. J. Kim,; H. J. Noh,; X. M. Shi,; F. Li,; Q. Jiang,; J. B. Baek, Low-temperature conversion of alcohols into bulky nanoporous graphene and pure hydrogen with robust selectivity on CaO. Adv. Mater. 2019, 31, 1807267.
[31]
J. Y. Sun,; Y. B. Chen,; X. Cai,; B. J. Ma,; Z. L. Chen,; M. K. Priydarshi,; K. Chen,; T. Gao,; X. J. Song,; Q. Q. Ji, et al. Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Res. 2015, 8, 3496-3504.
[32]
Y. H. Liu,; J. S. Xue,; T. Zheng,; J. R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 1996, 34, 193-200.
[33]
A. C. Ferrari,; D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235-246.
[34]
M. Tanhaei,; A. R. Mahjoub,; V. Safarifard, Energy-efficient sonochemical approach for the preparation of nanohybrid composites from graphene oxide and metal-organic framework. Inorg. Chem. Commun. 2019, 102, 185-191.
[35]
H. N. He,; D. Sun,; Y. G. Tang,; H. Y. Wang,; M. H. Shao, Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 2019, 23, 233-251.
[36]
T. Granzier-Nakajima,; K. Fujisawa,; V. Anil,; M. Terrones,; Y. T. Yeh, Controlling nitrogen doping in graphene with atomic precision: Synthesis and characterization. Nanomaterials 2019, 9, 425.
[37]
E. Memarzadeh Lotfabad,; P. Kalisvaart,; A. Kohandehghan,; D. Karpuzov,; D. Mitlin, Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li. J. Mater. Chem. A 2014, 2, 19685-19695.
[38]
S. Alvin,; H. S. Cahyadi,; J. Hwang,; W. Chang,; S. K. Kwak,; J. Kim, Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 2020, 10, 2000283.
[39]
T. Schiros,; D. Nordlund,; L. Palova,; D. Prezzi,; L. Y. Zhao,; K. S. Kim,; U. Wurstbauer,; C. Gutierrez,; D. Delongchamp,; C. Jaye, et al. Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett. 2012, 12, 4025-4031.
[40]
L. Lin,; J. Y. Li,; Q. H. Yuan,; Q. C. Li,; J. C. Zhang,; L. Z. Sun,; D. R. Rui,; Z. L. Chen,; K. C. Jia,; M. Z. Wang, et al. Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains. Sci. Adv. 2019, 5, eaaw8337.
[41]
S. Malifarge,; B. Delobel,; C. Delacourt, Experimental and modeling analysis of graphite electrodes with various thicknesses and porosities for high-energy-density Li-ion batteries. J. Electrochem. Soc. 2018, 165, A1275-A1287.
[42]
V. Augustyn,; J. Come,; M. A. Lowe,; J. W. Kim,; P. L. Taberna,; S. H. Tolbert,; H. D. Abruna,; P. Simon,; B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518-522.
[43]
T. Brezesinski,; J. Wang,; S. H. Tolbert,; B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146-151.
[44]
X. Hu,; G. B. Zhong,; J. W. Li,; Y. J. Liu,; J. Yuan,; J. X. Chen,; H. B. Zhan,; Z. H. Wen, Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 2020, 13, 2431-2440.