[1]
M. Armand,; J. M. Tarascon, Building better batteries. Nature 2008, 451, 652-657.
[2]
J. H. Wang,; Y. Yamada,; K. Sodeyama,; E. Watanabe,; K. Takada,; Y. Tateyama,; A. Yamada, Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 2018, 3, 22-29.
[3]
T. B. Schon,; B. T. McAllister,; P. F. Li,; D. S. Seferos, The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 2016, 45, 6345-6404.
[4]
J. Desilvestro,; W. Scheifele,; O. Haas, In situ determination of gravimetric and volumetric charge densities of battery electrodes: Polyaniline in aqueous and nonaqueous electrolytes. J. Electrochem. Soc. 1992, 139, 2727-2736.
[5]
W. Guo,; Y. X. Yin,; S. Xin,; Y. G. Guo,; L. J. Wan, Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Environ. Sci. 2012, 5, 5221-5225.
[6]
S. R. Deng,; L. B. Kong,; G. Q. Hu,; T. Wu,; D. Li,; Y. H. Zhou,; Z. Y. Li, Benzene-based polyorganodisulfide cathode materials for secondary lithium batteries. Electrochim. Acta 2006, 51, 2589-2593.
[7]
Y. Lu,; Q. Zhang,; L. Li,; Z. Q. Niu,; J. Chen, Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem 2018, 4, 2786-2813.
[8]
A. Orita,; M. G. Verde,; M. Sakai,; Y. S. Meng, A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 2016, 7, 13230.
[9]
J. Hong,; M. Lee,; B. Lee,; D. H. Seo,; C. B. Park,; K. Kang, Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 2014, 5, 5335.
[10]
A. Hollas,; X. L. Wei,; V. Murugesan,; Z. M. Nie,; B. Li,; D. Reed,; J. Liu,; V. Sprenkle,; W. Wang, A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat. Energy 2018, 3, 508-514.
[11]
M. Lee,; J. Hong,; B. Lee,; K. Ku,; S. Lee,; C. B. Park,; K. Kang, Multi-electron redox phenazine for ready-to-charge organic batteries. Green Chem. 2017, 19, 2980-2985.
[12]
H. D. Lim,; B. Lee,; Y. P. Zheng,; J. Hong,; J. Kim,; H. Gwon,; Y. Ko,; M. Lee,; K. Cho,; K. Kang, Rational design of redox mediators for advanced Li-O2 batteries. Nat. Energy 2016, 1, 16066.
[13]
X. Han,; C. Chang,; L. Yuan,; T. Sun,; J. Sun, Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv. Mater. 2007, 19, 1616-1621.
[14]
M. Walter,; K. V. Kravchyk,; C. Böfer,; R. Widmer,; M. V. Kovalenko, Polypyrenes as high-performance cathode materials for aluminum batteries. Adv. Mater. 2018, 30, 1705644.
[15]
D. Y. Chen,; A. J. Avestro,; Z. H. Chen,; J. L. Sun,; S. L. Wang,; M. Xiao,; Z. Erno,; M. M. Algaradah,; M. S. Nassar,; K. Amine, et al. A rigid naphthalenediimide triangle for organic rechargeable lithium-ion batteries. Adv. Mater. 2015, 27, 2907-2912.
[16]
M. Kolek,; F. Otteny,; P. Schmidt,; C. Mück-Lichtenfeld,; C. Einholz,; J. Becking,; E. Schleicher,; M. Winter,; P. Bieker,; B. Esser, Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π-π interactions. Energy Environ. Sci. 2017, 10, 2334-2341.
[17]
X. W. Chi,; Y. L. Liang,; F. Hao,; Y. Zhang,; J. Whiteley,; H. Dong,; P. Hu,; S. Lee,; Y. Yao, Tailored organic electrode material compatible with sulfide electrolyte for stable all-solid-state sodium batteries. Angew. Chem., Int. Ed. 2018, 57, 2630-2634.
[18]
L. M. Cui,; L. M. Zhou,; K. Zhang,; F. Y. Xiong,; S. S. Tan,; M. S. Li,; Q. Y. An,; Y. M. Kang,; L. Q. Mai, Salt-controlled dissolution in pigment cathode for high-capacity and long-life magnesium organic batteries. Nano Energy 2019, 65, 103902.
[19]
J. Lee,; H. Kim,; M. J. Park, Long-life, high-rate lithium-organic batteries based on naphthoquinone derivatives. Chem. Mater. 2016, 28, 2408-2416.
[20]
M. Lee,; J. Hong,; H. Kim,; H. D. Lim,; S. B. Cho,; K. Kang,; C. B. Park, Organic nanohybrids for fast and sustainable energy storage. Adv. Mater. 2014, 26, 2558-2565.
[21]
M. Yao,; H. Senoh,; S. I. Yamazaki,; Z. Siroma,; T. Sakai,; K. Yasuda, High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries. J. Power Sources 2010, 195, 8336-8340.
[22]
W. W. Zhang,; P. K. Sun,; S. R. Sun, A precise theoretical method for high-throughput screening of novel organic electrode materials for Li-ion batteries. J. Materiomics 2017, 3, 184-190.
[23]
J. K. Kim,; Y. Kim,; S. Park,; H. Ko,; Y. Kim, Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries. Energy Environ. Sci. 2016, 9, 1264-1269.
[24]
C. Y. Guo,; K. Zhang,; Q. Zhao,; L. K. Pei,; J. Chen, High-performance sodium batteries with the 9,10-anthraquinone/CMK-3 cathode and an ether-based electrolyte. Chem. Commun. 2015, 51, 10244-10247.
[25]
H. Wang,; P. F. Hu,; J. Yang,; G. M. Gong,; L. Guo,; X. D. Chen, Renewable-juglone-based high-performance sodium-ion batteries. Adv. Mater. 2015, 27, 2348-2354.
[26]
S. J. Cho,; K. H. Choi,; J. T. Yoo,; J. H. Kim,; Y. H. Lee,; S. J. Chun,; S. B. Park,; D. H. Choi,; Q. L. Wu,; S. Y. Lee, et al. Hetero-nanonet rechargeable paper batteries: Toward ultrahigh energy density and origami foldability. Adv. Funct. Mater. 2015, 25, 6029-6040.
[27]
B. Anothumakkool,; R. Soni,; S. N. Bhange,; S. Kurungot, Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy Environ. Sci. 2015, 8, 1339-1347.
[28]
K. H. Park,; B. H. Kim,; S. H. Song,; J. Kwon,; B. S. Kong,; K. Kang,; S. Jeon, Exfoliation of non-oxidized graphene flakes for scalable conductive film. Nano Lett. 2012, 12, 2871-2876.
[29]
S. H. Song,; K. H. Park,; B. H. Kim,; Y. W. Choi,; G. H. Jun,; D. J. Lee,; B. S. Kong,; K. W. Paik,; S. Jeon, Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 2013, 25, 732-737.
[30]
J. Kim,; G. Yoon,; J. Kim,; H. Yoon,; J. Baek,; J. H. Lee,; K. Kang,; S. Jeon, Extremely large, non-oxidized graphene flakes based on spontaneous solvent insertion into graphite intercalation compounds. Carbon 2018, 139, 309-316.
[31]
J. Kim,; N. M. Han,; J. Kim,; J. Lee,; J. K. Kim,; S. Jeon, Highly conductive and fracture-resistant epoxy composite based on non-oxidized graphene flake aerogel. ACS Appl. Mater. Interfaces 2018, 10, 37507-37516.
[32]
J. Kim,; S. H. Song,; H. G. Im,; G. Yoon,; D. Lee,; C. Choi,; J. Kim,; B. S. Bae,; K. Kang,; S. Jeon, Moisture barrier composites made of non-oxidized graphene flakes. Small 2015, 11, 3124-3129.
[33]
J. Kwon,; S. H. Lee,; K. H. Park,; D. H. Seo,; J. Lee,; B. S. Kong,; K. Kang,; S. Jeon, Simple preparation of high-quality graphene flakes without oxidation using potassium salts. Small 2011, 7, 864-868.
[34]
J. Kim,; J. Kim,; S. Song,; S. Y. Zhang,; J. Cha,; K. Kim,; H. Yoon,; Y. Jung,; K. W. Paik,; S. Jeon, Strength dependence of epoxy composites on the average filler size of non-oxidized graphene flake. Carbon 2017, 113, 379-386.
[35]
T. G. Novak,; J. Kim,; J. Kim,; H. Shin,; A. P. Tiwari,; J. Y. Song,; S. Jeon, Flexible thermoelectric films with high power factor made of non-oxidized graphene flakes. 2D Mater. 2019, 6, 045019.
[36]
Y. Ishii,; K. Tashiro,; K. Hosoe,; A. Al-zubaidi,; S. Kawasaki, Electrochemical lithium-ion storage properties of quinone molecules encapsulated in single-walled carbon nanotubes. Phys. Chem. Chem. Phys. 2016, 18, 10411-10418.
[37]
Z. P. Song,; Y. M. Qian,; X. Z. Liu,; T. Zhang,; Y. B. Zhu,; H. J. Yu,; M. Otani,; H. S. Zhou, A quinone-based oligomeric lithium salt for superior Li-organic batteries. Energy Environ. Sci. 2014, 7, 4077-4086.
[38]
B. Ernould,; M. Devos,; J. P. Bourgeois,; J. Rolland,; A. Vlad,; J. F. Gohy, Grafting of a redox polymer onto carbon nanotubes for high capacity battery materials. J. Mater. Chem. A 2015, 3, 8832-8839.
[39]
Z. P. Song,; Y. M. Qian,; M. L. Gordin,; D. H. Tang,; T. Xu,; M. Otani,; H. Zhan,; H. S. Zhou,; D. H. Wang, Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew. Chem., Int. Ed. 2015, 54, 13947-13951.
[40]
Z. P. Song,; Y. M. Qian,; T. Zhang,; M. Otani,; H. S. Zhou, Poly (benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable Li and Na batteries. Adv. Sci. 2015, 2, 1500124.
[41]
H. P. Wu,; Q. H. Meng,; Q. Yang,; M. Zhang,; K. Lu,; Z. X. Wei, Large-area polyimide/swcnt nanocable cathode for flexible lithium-ion batteries. Adv. Mater. 2015, 27, 6504-6510.
[42]
T. Nokami,; T. Matsuo,; Y. Inatomi,; N. Hojo,; T. Tsukagoshi,; H. Yoshizawa,; A. Shimizu,; H. Kuramoto,; K. Komae,; H. Tsuyama, et al. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J. Am. Chem. Soc. 2012, 134, 19694-19700.
[43]
H. Xia,; Y. Y. Qian,; Y. S. Fu,; X. Wang, Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries. Solid State Sci. 2013, 17, 67-71.
[44]
H. G. Zhang,; X. D. Yu,; P. V. Braun, Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277-281.
[45]
S. K. Kuk,; Y. Ham,; K. Gopinath,; P. Boonmongkolras,; Y. Lee,; Y. W. Lee,; S. Kondaveeti,; C. Ahn,; B. Shin,; J. K. Lee, et al. Continuous 3D titanium nitride nanoshell structure for solar-driven unbiased biocatalytic CO2 reduction. Adv. Energy Mater. 2019, 9, 1900029.
[46]
C. Ahn,; J. Park,; D. Cho,; G. Hyun,; Y. Ham,; K. Kim,; S. H. Nam,; G. Bae,; K. Lee,; Y. S. Shim, High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nanopatterning. Funct. Compos. Struct. 2019, 1, 032002.
[47]
G. Hyun,; S. H. Cho,; J. Park,; K. Kim,; C. Ahn,; A. P. Tiwari,; I. D. Kim,; S. Jeon, 3D ordered carbon/SnO2 hybrid nanostructures for energy storage applications. Electrochim. Acta 2018, 288, 108-114.
[48]
S. J. Chun,; E. S. Choi,; E. H. Lee,; J. H. Kim,; S. Y. Lee,; S. Y. Lee, Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J. Mater. Chem. 2012, 22, 16618-16626.
[49]
Y. X. Yu, A dispersion-corrected DFT study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h-BN. J. Mater. Chem. A 2014, 2, 8910-8917.
[50]
B. Das,; R. Voggu,; C. S. Rout,; C. Rao, Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chem. Commun. 2008, 5155-5157.
[51]
H. Matsuzaki,; M. A. Ohkura,; Y. Ishige,; Y. Nogami,; H. Okamoto, Photoinduced switching to metallic states in the two-dimensional organic mott insulator dimethylphenazine-tetrafluorotetracyanoquinodimethane with anisotropic molecular stacks. Phys. Rev. B 2015, 91, 245140.
[52]
B. C. Yu,; K. Park,; J. H. Jang,; J. B. Goodenough, Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery. ACS Energy Lett. 2016, 1, 633-637.
[53]
G. Assat,; D. Foix,; C. Delacourt,; A. Iadecola,; R. Dedryvère,; J. M. Tarascon, Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 2017, 8, 2219.
[54]
R. C. Chiu,; T. Garino,; M. J. Cima, Drying of granular ceramic films: I, effect of processing variables on cracking behavior. J. Am. Ceram. Soc. 1993, 76, 2257-2264.
[55]
D. Pech,; M. Brunet,; H. Durou,; P. H. Huang,; V. Mochalin,; Y. Gogotsi,; P. L. Taberna,; P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651-654.